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Résumé

The global energy sector is undergoing rapid changes from generation through fossil

fuel sources (example : coal, oil and gas) to generation through Renewable Energy Sources

(example : wind power and solar power). Hybrid Battery-Solar-Wind Power Generation

Systems (HBSWPGS) are highly unstable due to the fluctuation of the output power gene-

rated by the system caused by instantaneous variations in the availability of solar and wind

energy, making the output power an uncertain variable. This thesis intends to evaluate

the influence of uncertainty and produce a risk analysis of each constituent subsystem,

namely the Wind Turbine Generator (WTG), the Photovoltaic Generator (PVG) and Bat-

tery Energy Storage System (BESS) to provide quantified uncertainty information to aid

in the decision-making process in designing an optimal configuration of an HBSWPGS.

The electrical performance parameters of the subsystems are modeled as a function of

environmental variables such as wind speed, solar radiation and ambient temperature. We

model the uncertainty of the generated power and evaluate the sensitivity of the electrical

parameters to describe their influence on the performance of hybrid system as a function of

the variation of weather conditions throughout the hours of the day.

Le secteur mondial de l’énergie subit des changements rapides de la production par

des sources de combustibles fossiles (exemple : charbon, pétrole et gaz) à la production

par des sources d’énergie renouvelables (exemple : l’énergie éolienne et l’énergie solaire).

Les systèmes de production d’énergie hybride batterie-solaire-éolienne sont très instables

en raison de la fluctuation de la puissance de sortie générée par le système causée par

les variations instantanées de la disponibilité de l’énergie solaire et éolienne, faisant de la

puissance de sortie une variable incertaine. Cette thèse se propose d’évaluer l’influence

de l’incertitude et de produire une analyse de risque de chaque sous-système constitutif,

à savoir l’Éolienne, le Générateur Photovoltaïque et le système de stockage d’énergie par

batterie, afin de fournir des informations quantifiées sur l’incertitude pour faciliter le pro-

cessus de prise de décision dans la conception d’une configuration optimale d’un système

de production d’énergie hybride batterie-solaire-éolienne. Les paramètres de performance

électrique des sous-systèmes sont modélisés en fonction de variables environnementales

telles que la vitesse du vent, le rayonnement solaire et la température ambiante. Nous

modélisons l’incertitude de la puissance générée et évaluons la sensibilité des paramètres

électriques pour décrire leur influence sur les performances du système hybride en fonction

de la variation des conditions climatiques tout au long des heures de la journée.
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1

Introduction

1.1 | Summary description of the thesis
This thesis prepared under the title Multi-objective optimization and decision-making in

the context of complex and multi-physical systems/process (Application in socioeconomic and
industrial development in Mozambique), addresses modeling and optimization of a power
generation system through renewable energy sources. The power generation system conside-
red in this thesis is an isolated microgrid (off-grid microgrid) composed of two generation
subsystems namely, Wind Turbine Generator (WTG) using wind power as input variable to
generate output power Pwtg and Photovoltaic Generators (PVG) using solar power G and am-
bient temperature ta to generate output power Ppvg. The input variables of the hybrid system,
namely, wind speed, solar radiation and ambient temperature, are elements of connection
between the environment and the microgrid. Weather conditions determine the availability
and intensity of the input variables, there is a direct proportionality between the intensity of
the input variables and the power generated, therefore, as the input variables as environmental
variables have a fluctuating availability, the output power is fluctuating therefore uncertain. In
power generation systems based on renewable energy sources, the impacts of the fluctuation
of the output power are mitigated by the integration of energy storage systems, in this thesis
we consider battery energy storage systems, thus, henceforth, the microgrid is called Hybrid
Battery-Solar-Wind Power Generation System. The diagram and its description are presented
in figure 3.1, page 38.
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1.2 | Contextualization of the thesis

According to the International Energy Agency (IEA) access to electricity is a fundamen-
tal factor for sustainable industrial, socioeconomic and human development, however, about
20% of the world population (approximately 1.5 billion) does not have access to electricity.
Furthermore, globally around 2.4 billion people meet their energy needs for cooking and hea-
ting by exploiting forest resources, thus contributing to deforestation [12, 13, 14]. Despite the
fundamental importance of electricity in the development process, fossil fuels (coal, oil and
gas) continue to be the main raw material in the generation of electricity, thus contributing
to the emission of greenhouse gases leading to global warming as described in section 2.2.
Deforestation and global warming are harmful to the ecological balance and the viability of
life on earth, therefore, the use of clean and renewable energy sources is highly recommended.

1.3 | Problem statement

Power generation urgently needs to be fully sustainable, for that objective, the use of
renewable energies (RE) is pointed out as an affordable, reliable and clean source of energy
combined with the use of off-grid microgrids mainly in rural, remote and difficult to access
regions. In this thesis, consider an isolated (or off-grid) Hybrid Battery-Solar-Wind Power
Generation System (HBSWPGS) powered by the following renewable energy sources (RES),
wind speed v that feeds the Wind Turbine Generator (WTG) subsystem, and the solar radiation
G that feeds the Photovoltaic Generator (PVG) subsystem influenced by the ambient tempera-
ture ta. Wind speed and solar radiation are environment variables with an instantaneous and
stochastic variation pattern whose availability is only predictable through probabilistic models
using historical data. The instantaneous variations and the intermittence of wind speed and
solar radiation make the output power an uncertain variable, therefore, it is essential to design
power microgrids with optimized configuration and parameters, including evaluation of the
influence of uncertainty and risk analysis leading to the correct support in the decision-making
process.
Uncertainty assessment, risk analysis and probabilistic modeling of output power in RES-
based systems are important activities to ensure improved accuracy of estimation and pre-
diction of output power, system reliability, power generation capacity that satisfies the power
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demand, to avoid imbalance between generation and demand that leads to undersizing, over-
sizing, power fluctuations, supply interruptions and blackouts.

1.4 | Main modeling stages performed
(i) Modeling the output power of wind turbine generators (WTG)

(ii) Calculation of photovoltaic generator (PVG) parameters and comparison (validation) with
existing parameter models in the literature

(iii) Calculation of battery parameters and comparison of models

(iv) Modeling the uncertainty of the output power and the sensitivity of the model parameters
as a function of uncertainty using Monte Carlo method.

1.5 | Motivation

1.5.1 | Scientific motivation
Uncertainty remains a determining factor in the performance of RES-based power gene-

ration systems. Due to the persistent existence of uncertainty in complex systems, modeling,
quantifying and understanding its propagation and impact on systems performance is crucial.
Considering that hybrid power generation systems based on Wind Turbine Generators (WTG)
and Photovoltaic Generators (PVG) with integrated Battery Energy Storage Systems (BESS) are
affected by variations in weather conditions, namely, wind speed , solar radiation and ambient
temperature, it is essential to evaluate the performance of the system under instantaneously
variable weather conditions.
The WTG, PVG and BESS have a performance described by the respective characteristic curves
and parameters, thus, it is important to evaluate the behavior of the parameters as a function
of weather conditions, to understand the system response to environmental variations.

1.5.2 | Socioeconomic motivation
Mozambique is among the 20 countries with a lack of access to electricity, where 17.5 of

the 30 million inhabitants live without access to electricity, mainly in rural areas where 66.6%
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of the Mozambican population resides. In 2020, only 4.5% of the rural population had access
to electricity, however, Mozambique has an identified and confirmed potential of renewable
energy sources equivalent to 23,000 GW distributed almost evenly throughout the country [15].
To take advantage of available renewable potential, it is essential to invest in rural electrifica-
tion infrastructure based on isolated Hybrid Battrery-Solar-Wind Power Generation Systems
(HBSWPGS) as viable solution capable of ensuring accelerated access to clean and renewable
energy sources for rural communities in Mozambique, including those of developing countries
in general.

1.6 | Aims and Objectives

1.6.1 | General objectives
(i) To assess the impact of uncertainty on the output power of WTG and PVG as constituent

parts of a hybrid power generation system.

(ii) To determine the sensitivity on the operating and performance parameters of the wind
turbine generator, the photovoltaic solar panel and the battery.

1.6.2 | Specific objectives
(i) Model the operating and performance parameters of a photovoltaic cell and a battery as

a function of changing weather conditions over the hours of the day.

(ii) Evaluate the uncertainty of the models of the parameters of the photovoltaic solar panel
and the battery as a function of changing weather conditions over the hours of the day

(iii) Evaluate the sensitivity of the photovoltaic solar panel and battery operating parame-
ters to provide quantified information on uncertainty as a function of changing weather
conditions over the hours of the day

1.7 | Proposed Solution
This thesis uses historical data on wind speed v, solar radiation G and ambient temperature

ta observed and recorded hourly for two years (2019-2020). The data are organized in the form
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of an hourly average during the day, i.e., Data is grouped into hourly averages for all 24 hours
and all 731 days from 2019-2020. Therefore, we have a 731 X 24 matrix with hourly average
values.

The proposed solution basically consists of mathematical modeling using equations of the
characteristic parameters of the WTG, PVG and BESS operation.The equations are deduced
and compared with those already existing in published studies. To these equations, we apply
the input data (wind speed, solar radiation and ambient temperature) obtaining results that
are later validated (or compared) with results of studies available in the literature.

1.8 | Document structure
After an introductory approach, the thesis is organized and structured as follows :
— Chapter 2 : Background & and a literature Overview

It addresses all theoretical foundations and scientific tools used in the development of
the thesis. It was based on research of the scientific literature in the form of articles,
books, online sites, including reports from governments, non-governmental organiza-
tions, and public and private institutions.

— Chapter 3 : Material & Methods
It describes the methodology used to search for the solution to the research problem,
the simulation models, the computational tools for simulation and obtaining results,
including the model validation process,

— Chapter 4 : Conclusion
It addresses the findings and achievements resulting from the critical observation of the
results of computer simulations and validation of results.
The conclusion discusses the strengths and weaknesses of our approach, the achieved
aims, a general criticism of the work, and final remarks.
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2

Background & Literature Overview

2.1 | Fossil fuel energy versus Greenhouse gases

The International Energy Agency states that access to electricity is a fundamental condition
for sustainable industrial, socioeconomic and human development [12, 16]. The global demand
for electricity is still satisfied by the direct burning of fossil fuels (example : Coal, oil and gas)
resulting in the emission of greenhouse gases (GHG) leading to environmental damage such
as global warming, extreme heat waves, polar ice melting, rising sea levels, frequent floods,
severe droughts, air, water and soil pollution, landslides, including deterioration in the health
of plants, animals and human beings [17]. The seriousness of the consequences caused by
anthropogenic actions on the environmental and climatic systems, due to the direct burning
of fossil fuels and deforestation, require coordinated global action to drastically reduce green-
house gas emissions. According to the World Bank and the International Energy Agency, if no
coordinated action is taken globally, energy generation from fossil fuel sources will continue
to be the main cause of greenhouse gas emissions [18, 19, 20].

It is our opinion that this situation is somewhat paradoxical, since, on the one hand, energy
is a fundamental factor for industrial, socio-economic and human development, but on
the other hand, the global energy demand is still mostly satisfied by fossil fuel sources
(example : coal, oil and gas). In this regard, humanity may be in a conflict of interests..

According to [21] studies published in recent decades demonstrate that the increase in the
amount of greenhouse gas emissions in the atmosphere, with emphasis on carbon dioxide,
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is directly related to the growth and expansion of the global industrial sector, which in turn
depends mostly on fossil fuel energy. The main greenhouse gases of anthropogenic origin are,
among others, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), fluorinated gases
such as hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6) and
nitrogen trifluoride (NF3), approximately 41 billion tons of carbon dioxide are emitted annually
into the atmosphere increasing the temperature of the planet, the total amount of greenhouse
gases present in the atmosphere has the following proportions : 53% carbon dioxide, 17%
methane, 12% chlorofluorocarbons (CFC), 6% Nitrous Oxide and 12% all others [22, 17].
In this critical context of climate change, the global community (governments, multinational
companies, non-governmental organizations, academics, scholars and societies in their most
varied forms of organization and representation) realizing the irreversible environmental cost
due to the use of fossil fuel energies, mobilized for a global, coordinated, effective and progres-
sive response aimed at reducing emissions of greenhouse gases to contain global warming,
resulting in the Paris agreement on climate change aiming the following global objectives
[23, 24] :

(i) Holding the increase in the global average temperature to well below 20 C above pre-
industrial levels and pursuing efforts to limit the temperature increase to 1.50C above pre-
industrial levels, recognizing that this would significantly reduce the risks and impacts
of climate change (Article 2 of the Paris agreement on climate change) ;

(ii) The aim is to reach global peaking of greenhouse gas emissions as soon as possible (Point
1 of Article 4 of the Paris agreement on climate change).

The focus of the Paris Agreement on Global Warming is eradicating poverty through sus-
tainable development, safeguarding the integrity of all ecosystems and protecting biodiversity
on earth. The content of the Paris agreement suggests that global warming is a real problem,
with irreversible environmental and economic consequences and potential to deteriorate the
balance of the ecosystem and biodiversity, making life on earth unfeasible [25].
The essential aspect in global warming is the greenhouse effect which can be explained in
two perspectives, the greenhouse effect due to natural causes which is beneficial and the
greenhouse effect due to anthropogenic causes which is harmful. The greenhouse effect by
natural causes is a phenomenon of the Earth’s atmospheric system, which acts as a "protective
blanket" that receives solar energy reflected by the Earth’s surface, preventing that energy
from being totally lost to space, aiming to maintain an optimal global average temperature
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for the existence of life on earth, without this "protective blanket", all energy would be lost in
space, causing very low temperatures (global cooling) that would make life on earth comple-
tely impossible. Anthropogenic action related to the burning of fossil fuels (coal, oil and gas)
leads to the massive presence of gases in the atmosphere, overloading the "protective blanket",
consequently retaining heat above the necessary resulting in global warming that underlies the
agreement of Paris on Global Warming.

Global economic development is intrinsically dependent on the energy sector based on
fossil energies, thus requiring a high sense of cost-benefit balance, since more than 60% of the
energy produced globally is still assured by sources based on fossil fuels causing environmen-
tal damage, however, this energy is very necessary to ensure industrial, socioeconomic and
human development. The intrinsic relationship between energy and economic development
urgently needs to adopt a sustainability approach. Ultimately, the environmental crisis due to
greenhouse gases underlies the problematization of energy generation through the use of fossil
fuel sources.

2.2 | Fossil fuel energy versus renewable energy
The literature on power generation based on fossil fuels discusses environmental impacts

and their consequences on living beings, highlighting, global warming, extreme heat waves,
polar ice melt, rising ocean water levels, irregular rainfall, frequent flooding, severe droughts,
deforestation, soil erosion and landslide, and pollutiom of soil, water and air, deterioration of
the health of plants, animals and humans, including imbalance of ecosystem and biodiversity.
These are direct and observable consequences on which the United Nations Organization’s
goal is based, which is to reduce greenhouse gas emissions by 45% by 2045 and achieve zero
emissions by 2050 [22, 17]. Global agreements such as the United Nations Declaration on
Climate Change, more specifically the Sustainable Development Goal 7 (SDG-7) and the Paris
Agreement on Climate Change, converge on two fundamental pillars :

(i) The recognition that the generation of energy through the use of fossil fuel sources causes
environmental problems of global impact demanding an urgent global solution ;

(ii) Acceptance of the use of clean and renewable energy sources as a globally sustainable
solution requiring globally coordinated actions
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Global agreements to reverse climate change include, among others the following actions
[26] :

(i) Global migration from fossil fuel to renewable energies ;

(ii) Building sustainable and resilient cities and infrastructure ;

(iii) Sustainable management of forests and oceans ;

(iv) Ecological and environmentally friendly agriculture ;

(v) Zero greenhouse gas emissions leading to green and sustainable economies.

Some sectors of the international community believe that carrying out these actions requires
a collective, coordinated and symbiotic commitment between governments, the private sector
and financial institutions to avoid designing, financing and implementing coal-fired power
plant projects. The global commitment to reduce greenhouse gas emissions, should be so inci-
sive that no coal-fired power plant should be financed or installed. The commitment to reduce
greenhouse gas emissions due to anthropogenic causes means, a gradual but effective aban-
donment of fossil fuels and the adoption of clean and renewable energy sources, addressed in
the literature as Energy transition.

Energy transition is a matter of ensuring sustainable industrial, socioeconomic and hu-
man development, therefore, it is urgent to decarbonize highly industrialized economies and
support emerging and less industrialized economies towards green economies based on clean
and renewable energies, thereby implementing an Energy Transition process based on the Paris
Agreement on climate change.

2.3 | Energy transition and sustainability
The term transition is defined in online dictionaries as a movement, passage, or change of

a position, state, or condition. According to [27] transition is a process (or period) of changing
from one state (or condition), type (or form), place (or style) to another. Briefly, the term
transition refers to a process (or period) of change from a well-defined starting point to a well-
defined destination point.
Climate changes caused by greenhouse gas emissions have sparked the debate on the concept
of energy transition defined as the emigration from current global systems based on fossil fuels
(as a starting point) to new global systems based on clean and renewable energy sources (as
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destination point).
In the context of the Paris Agreement on Climate Change (after signature) it can be said that the
energy transition is the ongoing process of replacing power systems based on fossil fuel sources
with power systems based on clean and renewable energy sources. Roughly speaking, energy
transition means structural change in power systems [28, 29]. The energy transition process
leading to a change in the global energy landscape has the challenge of overcoming multiple
economic, social, technical, technological and political challenges, so the energy transition
should be approached as a complex and dynamic process of change. When approaching the
energy transition based on the Paris agreement on climate change, it is important to consider
that there is a starting point (fossil fuel energy) and a desired destination point (clean and
renewable energy), but also, there is a period (or energy transition). The success of a transition
process depends on the understanding of the objectives and the meaning attributed to such a
transition to a desired point, therefore, it might not be reasonable to approach the change from
fossil fuels to clean and renewable energy sources minimizing the importance of the transition
period (or process), the Energy transition. Every process of change impacts the life of the indi-
vidual or the community, therefore, the energy transition as a process of change depends on the
individual and collective understanding of the severity of the consequences of climate change
caused by the use of fossil fuels, but it also depends on the global commitment to the transition
to renewable energy sources, in this context, the energy transition should be a sustainable
process, with meaning of common understanding, and with globally coordinated action [30].

In the context of the Paris Agreement on Climate Change, the effective change to low
carbon power systems depends on the energy transition as a process of change which in
turn depends on the collective understanding of the objectives and meaning given to such a
desired change, there is an intrinsic interdependence between the energy transition and the
effective implementation of low carbon power systems. Follow-up actions in the transition
period determine the desired results, so the Energy transition is very important.

2.4 | Variability of Renewable Energy Sources
The ongoing energy transition based on the Paris Agreement on Climate and the SDG-7

decreed by the United Nations Organization, points clean and Renewable Energy Sources as
a solution to achieving a low-carbon power system aiming at building green economies (low-
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carbon economies) conducive to sustainable industrial, socioeconomic and human develop-
ment. Despite the undeniable advantage of renewable energy sources such as wind power
(for wind turbine generator) and solar power (for photovoltaic generator), there is a challenge
related to its highly unstable availability pattern, the instantaneous variations (variability and
intermittency) resulting from climate and environmental dynamics.
Power generation through the use of RES is environmentally sustainable, but power generated
is fluctuating and uncertain due to the variable and intermittent availability of renewable po-
wer. The variable nature of RES is the main source of uncertainty causing fluctuation in output
power, thus, availability of RES, estimation of output power and uncertainty quantification
are best approached in probabilistic terms [31]. The instantaneous variations of the RES pose
challenges to the continuous supply of power, the quality of power supplied, the reliability of
the system, and the response to the needs of the demand of power, energy is generated at the
exact moment it is consumed, the supply must respond to demand in real time [32].

The variable availability of RES is a natural phenomenon, artificially uncontrollable, impos-
sible to predict precisely, making uncertainty persistently existent.

2.5 | Uncertainty : Definition and Concept

2.5.1 | Some theoretical definition

Uncertainty is a broad concept in its historical-evolutionary approach, it is a transversal
concept without a globally accepted standard definition, its meaning depends on the scientific
domain of application such as philosophy, physics, statistics, economics, finance, psychology
and other areas of scientific domain. The absence of a theoretical definition of universal consen-
sus makes uncertainty a concept that is not easy to define [33].
To illustrate the diversity in the approach and definition of the concept of uncertainty, some of
the definitions available in the literature are presented below :

(i) Definition 1
Uncertainty is a multifaceted characterization of a data set of measurements and obser-
vations of certain phenomena including predictions made from such data [34].

(ii) Definition 2
In evaluating the dynamics of complex systems (or processes), including complex ma-
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thematical models, uncertainty can be defined as the lack (or incompleteness) of data,
or even the presence of uncomfortable, unforeseen and undesirable variables, making it
difficult to obtain accurate results in a measurement process [35].

(iii) Definition 3
Uncertainty is relative to uncertain measure, some phenomena can be quantified by un-
certain measure, therefore [36] defines uncertainty as anything (or phenomenon) quanti-
fied by an uncertain measure

(iv) Definition 4
Uncertainty is a term (or concept) that expresses (or describes) something (or phenome-
non) definitely not known (or unknowable) only imprecisely and incompletely descri-
bable, based on vague information or vague knowledge [37].

(v) Definition 5
For [38] uncertainty and information are two closely linked concepts arguing that whe-
never we have an unsolved uncertainty problem, there is always information deficiency,
in this approach, uncertainty is a property of information directly related to the limited
perception of systems.

(vi) Definition 6
Uncertainty as an intrinsic property of information is so present and persistent (or omni-
present) [38] such that at any stage of a system (or process) a continuous decision-making
process is required, in this context, the total (or partial) absence of data (or information)
leading to a correct (or effective) decision-making process becomes a source of uncertainty
[39].

(vii) Definition 7
Uncertainty is a state (or condition) of limited perception of phenomena, resulting from
the total (or partial) absence of information (or data) leading to the description of such
phenomena through degrees of belief [40, 39].

(viii) Definition 8 (in Metrology)
Acording to [41], Uncertainty (of measurement) is a non-negative parameter, associa-
ted with the result of a measurement, which characterizes the dispersion of the value
that could reasonably be attributed to the quantity intended to be measured (or to the
measurand). For [42] the uncertainty of a measurement result reflects a lack of accurate
knowledge about the value of the measurand.
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Despite the diversity of definitions available in the literature, it is perceived that uncertainty is
addressed under the condition of not knowing for sure [33, 43]. According to [44], the choice of
an adequate (or appropriate) definition in view of the multiplicity of meanings and attempts
to define the concept of uncertainty available in the literature, demand a deep knowledge
and correct characterization of the system (or process) under consideration (or of interest), the
type of related information, including the nature of the intrinsic uncertainty of the system (or
process).

In an attempt to formulate a generic definition applicable in various scientific domains, Bao-
ding Liu formulated uncertainty theory in 2007 [45] and refined it in 2010 [46], using three
cornerstones namely :

— Uncertain measure : To measure the belief degree of an uncertain event [46]
— uncertain variable : To represent imprecise quantities [46]
— Uncertainty distribution : To describe uncertain variables in an incomplete but friendly

way (easy-to-use) [46].

Using axiomatic mathematics on the three foundations mentioned above, Baoding Liu for-
mulated the theory of uncertainty based on four fundamental axioms namely Normality, Dua-
lity, Subadditivity and Product summarily described as [45, 46, 36] :

Let Γ be a nonempty set, and L a σ-algebra over Γ. Each element Λ in L is called an event. A set
function M from L to [0, 1] is called un uncertain measure if it satisfies the following axioms :

— Axiom 1 : Normality Axiom
For the universal set Γ [36] :
M {Γ} = 1

— Axiom 2 : Duality Axiom
For any event Λ [36] :
M {Λ}+ M {Λc} = 1,

— Axiom 3 : Subadditivity Axiom
For every countable sequence Λ1, Λ2, ... [36]

M
{

∞⋃
i=1

Λi

}
≤

∞
∑

i=1
M {Λi}

The triplet (Γ,L,M) are called uncertainty space.
— Axiom 4 : Product Axiom

Let Γk, Lk, Mk be uncertain spaces for k = 1, 2, . . . , n. The product uncertain measure
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M is an uncertain measure on the product σ-algebra L1 · L2 · L3 . . .Ln satifying [36] :

M
{

n
∏
i=1

Λi

}
= min

1≤k≤n
Mk{Λk}

In the mathematical (or scientific) context based on the uncertainty theory of [45], some pheno-
mena can be quantified by uncertain measure, the so-called uncertain phenomenon, thus, wi-
thout prejudice to the transversality (or multidisciplinarity) of the concept, uncertainty is for-
mally defined as anything that can be quantified by uncertain measure, satisfying the axioms
of uncertainty theory in [36].

2.5.2 | Comment on section 2.5

Carrying out a critical analysis, it can be seen that the various theoretical approaches to
defining the concept of uncertainty still do not have consensus within the scientific community,
there are different perceptions in different fields of science and engineering, however, the
theory of uncertainty based on axiomatic foundations formulated by Baoding Liu, made uncer-
tainty theory a branch of mathematics that addresses the mathematical modeling of uncertain
phenomena based on mathematical foundations [45, 47, 36]. In this context, within the scope
of this thesis and in subsequent works of continuous research, special attention will be given
to the theory of uncertainty based on the foundations of axiomatic mathematics formulated by
Baoding Liu discribed in [45, 36].

2.6 | Uncertainty Modeling : Definition and Concept
System dynamics deals with instantaneous changes in system behavior over time [48], i.e.,

deals with how things change over time, such changes often unforeseen and undesirable are
a potential source of uncertainty. In complex systems, uncertainty is always present and per-
sistent, it is omnipresent, therefore intrinsic to systems [38], negatively impacting the decision-
making process [49]. In this context, one of the challenges that needs to be addressed is how
to effectively model the uncertainties persistently present in systems [50], there are two types
of uncertainty in complex systems, namely, probabilistic uncertainty describing the uncertainty
of the sensor data (or measurement uncertainty), and possibilistic uncertainty describing the
uncertainty of the data (or parameters) of the model, i.e., computation, however, the dynamics
of complex systems is generally influenced by human behavior which, due to its qualitative (or
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abstract) nature, is difficult to include as a controllable variable (or parameter) of the model,
but human behavior impacts the quantitative (definitive) results of the modeling [48].
Although engineering systems are inevitably affected by uncertainties inherently generated
by multiple sources directly or indirectly associated with the systems, it is desirable for engi-
neering systems to operate effectively while maintaining reliability in service, therefore, it is
essential to assess possible sources of uncertainty, forecast qualitative and quantitative uncer-
tainties to better understand the impact of such uncertainties on engineering systems and help
in the decision-making process, which means, assessing the impact of uncertainties in complex
engineering systems involves aggregating and modeling them quantitatively (example : recor-
ded data) and qualitatively (example : human factors and expert opinions) [51]. Uncertainty
analysis investigates the uncertainty of variables that significantly impact the performance of a
system giving a technical contribution to the decision-making process through the uncertainty
quantification of the relevant variables.

2.6.1 | Uncertainty Quantification

Uncertainty quantification (UQ) is the science that studies the quantitative characteriza-
tion, reduction and mitigation of the effects of uncertainties in computational and real-world
applications [52]. UQ is essentially an activity of identifying and understanding "almost" all
uncertainties generally classified into two categories, epistemic uncertainties (eliminable) and
aleatory uncertainties (non-reducible). Epistemic uncertainties arise due to lack of knowledge, if
knowledge about the system is sufficient, epistemic uncertainties can be reasonably reduced,
while aleatory uncertainties are generally irreducible, however, the probable reducibility de-
pends on the randomness (or stochastic variations) of the phenomenon under observation [53].
Briefly, uncertainty quantification is an activity exclusively dedicated to quantitative characte-
rization and reduction of uncertainties present in computer model simulations aiming to iden-
tify the main sources of uncertainties in the model, characterize such uncertainties present in
the model, improve the understanding of the model and facilitate the decision-making process.
Every modeling process (or computer simulation) is essentially a process of abstraction, sim-
plification and interpretation of reality, i.e., the incompleteness of a model and the mismatch
between a model and reality are the main source of uncertainty even in carefully designed
models [54]. The models are designed to express the fundamental principles of the systems,
helping to understand the dynamics of the processes, despite this, all models have have errors
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whose sources are grouped into three categories namely [55] :

(a) Model error :
Forecasting systems are based on probability density functions, however, it is difficult to
find perfect single probabilistic models for a perfectly accurate forecast, being therefore
a source of predictive uncertainty [54]. Currently, the multi-model combination (MMC)
strategy is used to reduce the so-called model error [55].

(b) Data error :
All computer models require input data to run simulations. Observed data (recorded data)
should be as small a difference approximation as possible to real-world phenomena, to
reduce error as a source of uncertainty about the data. If the simulation data is an imperfect
approximation of the real world, the error is called data error [55].

(c) Parameter error :
Computer simulated systems depend on simulation models characterized by specific para-
meters such as constants or coefficients that characterize each model individually. If model
parameters are incorrectly specified it affects model performance and output results giving
rise to parameter error [55].

2.6.2 | Comment on section 2.6

Computer models are a very useful and indispensable tool for simulating the dynamic be-
havior of complex systems, however, uncertainty is an ever-present phenomenon. Quantifying
uncertainty improves knowledge about the system and facilitates the decision-making process.

Any decision taken without considering uncertainties has no condition to be considered as a
decision

When studying a complex system, identifying potential sources of uncertainty, characterizing,
quantifying and reducing its influence should be a priority activity to ensure reliable system
output results.
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2.7 | Uncertainties of renewable energy sources
Conventional power generation systems based on fossil fuels (coal, oil and gas) have over

time been identified as the main cause of greenhouse (GHG) gas emissions that cause global
warming and climate change, therefore, the global community is mobilizing for a migration
to the use of power generation systems based on RES with emphasis on wind speed for Wind
Turbine Generators (WTG) and solar radiation for Photovoltaic Generators (PVG). Wind speed
v and solar radiation G are environmental variables, their stochastic availability (instantaneous
variations) depends on the dynamics of the climate system, i.e., vary over time on scales from
minutes to seasons. [31].

2.7.1 | Balance between generation and demand

The desirable scenario is a power generation system providing continuous stable power,
satisfying demand (consumption needs), permanently ensuring the balance between genera-
tion G(t) and demand D(t) as :

G(t) = D(t) (2.1)

Satisfying equation 2.1 is just a probable scenario, it is not certain, as there are instantaneous
variations on both the generation side and the demand side, for the following reasons :

(i) Generation side G(t) :

(a) Dependence on weather and environmental variables : Wind speed, solar radiation,
air temperature, air density, season, and other environmental variables and parame-
ters.

(b) Generation pattern : Fluctuating and uncertain

(ii) Demand side D(t) :

(a) Dependence on human factors : Industrial development, production of goods and
services, modernization of the residential sector, calendar of events of public interest,
need for heating or cooling according to the season, and other.

(b) Demand behavior : Varies according to social dynamics and immediate needs.
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Despite the usefulness of forecasting models based on probability density functions, ac-
curately predicting the generation or demand is a difficult challenge, because the uncertainty
based on error (data error, parameter error, model error and including error by human factors)
is a persistently present phenomenon. In this sense, to mitigate the effects of variability on the
gereration side (mainly at times of low (or no) availability of Renewable Energies (RE)), and to
reduce the effects of variation of power consumption on the demand side (mainly in periods
of system overload and peak consumption), the Energy Storage Systems (ESS) play the role of
compensating the generation deficit (when demand is greater than generation), dampening in
case of system overload and demand peaks, including compensation for instantaneous system
output power fluctuations in real time.

2.7.2 | Comment on section 2.7

Integrating Energy Storage Systems (ESS) into purely RES-based hybrid power systems
is not a guarantee of total elimination of the challenges of fluctuations and interruptions in
the power supply, since, on the one hand, ESS mainly based on batteries have parameters of
operation and performance that can be affected by several factors, and on the other hand, the
PVG subsystems do not generate power in the long night period in which only the WTG can
generate power, which challenges the autonomy and the state of charge of the batteries

2.8 | Mathematical modeling of RES
The power generation systems based on RES, as considered in this thesis, have as input

variables the wind power and solar power, and as output variables the power of the WTG
Wind Turbine Generator and the PVG Photovoltaic Generator, thus, knowing If both the input
variables and the output variables are uncertain in nature, they are best approached in terms
of probabilistic models.

2.8.1 | Mathematical modeling of wind speed

According to [56, 57, 58] the best expression often recommended for modeling wind speed
is the Weibull probability density function fw(vj) expressed as :
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fw(vj) =
K
C
·
(

vj

C

)K−1

· exp

[
−
(

vj

C

)K
]

, vj ≥ 0. (2.2)

Where :
fw(vj) is the probability density function, vj is the observed wind speed data set. K and C are
parameters of the Weibull probability density function described as K is the shape index and
C is the scale index.
If the shape index parameter K takes the value 2 (K = 2), the Weibull probability density func-
tion becomes a special case (particular case) called the Rayleigh probability density function
expressed as :

fr(vj) =

(
2 · vj

C2

)
· exp

[
−
(

vj

C

)2
]

, vj ≥ 0. (2.3)

By processing historical wind speed data vj, the scale index C can be obtained using an
acceptable approximation expressed as :

C = 1.128 · vmean (2.4)

where :
vmean is the hourly average forecasted wind speed obtained from a time series.
The probability of the wind speed state v at any specific forecast time hj can be expressed as :

ρ(vj) =
∫ v2

v1

fw(v) · dv (2.5)

In this thesis, the period of interest varies in the time series from 06 :00 a.m. to 19 :00 p.m.,
hj = h6, h7, · · · h18, h19.

2.8.2 | Mathematical modeling of solar radiation
The variation in solar radiation sj is best modeled using the Beta probability density func-

tion fb(sj) expressed as [56, 57, 58] :

fb(s) =


Γ(α+β)

Γ(α)·Γ(β)
· s(α−1) · (1 − s)(β−1) f or 0 ≤ s ≤ 1, α ≥ 0, β ≥ 0.

0, otherwise
(2.6)
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Where α and β are Beta pdf parameters expressed as :

α =
µ · β

1 − µ
and β = (1 − µ) ·

[
µ(1 + µ)

σ2 − 1
]

(2.7)

Where µ represents the means (statistical mean), and σ represents the standard deviation of
the random variable, the solar radiation G.
The probability of the solar radiation state s at any specific forecast time hj within the range of
interest hj = h1, h2, · · · h23, h24 can be expressed as :

ρ(s) =
∫ s2

s1

fb(s) · ds (2.8)

2.8.3 | Comment on section 2.8

Equations 2.2 and 2.6 allow modeling the intensity of wind speed and solar radiation as
input variables for the production of quantified information on the estimate, uncertainty and
risk assessment in the process of power generation and decision making.

2.9 | Mathematical modeling of output power

2.9.1 | Modeling the output power of the wind turbine generator

The output power of a wind turbine generator Pwtg depends on wind speed v and the
parameters of the wind turbine power curve, namely cut-in speed vci, rated speed vrated, cut-
out speed vco, rated power Prated and power coefficient Cp below represented by the parameter
param as :

param =
{

vci, vrated, vco, Prated, Cp
}

(2.9)

The output power is a wind turbine generator Pwtg it is a function of the wind speed v and
the characteristic parameters param of the power performance curve expressed as :

Pwtg = f (v, param) (2.10)
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The wind-to-power conversion used the test data provided in the manufacturer’s data
sheet. From such manufacturer’s test data, namely, wind speed and output power, the inter-
polation was performed using the piecewise cubic spline interpolation technique.
Cubic spline interpolation is a non-parametric fitting technique used to estimate values that
fall between two known data points by drawing a simple smooth curve through the data, i.e.,
it fits different polynomial cubic functions between two known data points [59]. The typical
fitting equation that characterizes the output power of the wind turbine generator Pwtg using
the cubic spline interpolation functions technique can be expressed as :

Pwtg(v) =



0 f or v ≤ vci

a1v3 + b1v2 + c1v + d1 f or vci ≤ v ≤ v1

a2v3 + b2v2 + c2v + d2 f or v1 ≤ v ≤ v2

· · · · · · · · ·

anv3 + bnv2 + cnv + dn f or vn−1 ≤ v ≤ vr

Pr f or vr ≤ v ≤ vco

0 f or v ≥ vco

(2.11)

Where :
a, b and c are the polynomial coefficients of cubic spline interpolation functions, n is the num-
ber of cubic spline interpolation functions corresponding to n + 1 data pairs (wind speed,
power)=(v, Pwtg) provided by the manufacturer datasheet, Pwtg(v) is the output power gene-
rated by the wind turbine at wind speed v, vci is the cut-in wind speed, vco is the cut-out wind
speed, vr is the rated wind speed and Pr is the rated output power Pwtg.

Normally, data is recorded at a certain height (reference height) but is applied at another height,
i.e., the wind speed data used in this thesis were recorded by a device located at a height of
10 meters, but the wind turbine generator selected in this thesis is 50 meters high, therefore,
the vertical profile of the wind speed must be adjusted. The vertical profile of wind speed at a
given geographical point can be adjusted through the power law expressed as [8, 60, 61, 62] :

v
vre f

=

(
h

hre f

)α

(2.12)
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Where :
v (in m s−1) is the wind speed at the height of the wind turbine generator, also called hub
height h (in m), vre f (in m s−1) is the wind speed measured at the reference height (height
of observation and recording point) hre f (in m), α (dimensionless) is the surface roughness
coefficient.

2.9.2 | Modeling the output power of the photovoltaic generator

The irradiance-to-power conversion is done through photovoltaic modules that basically
consist of photovoltaic cells that convert solar radiation into phtovoltaic power Ppvg mathema-
tically expressed as :

Ppvg = Ni · FFi · Vyi · Iyi (2.13)

Where :
Ni is the total number of solar cells in the i-th solar generator.
FFi is the fill factor (dimensionless).
Vyi is the voltage across the PV cell terminals in open circuit mode (in V).
Iyi is the light generated current (photocurrent) neglecting parasitic resistance (in A)

FFi =
VMPPi · IMPPi

VOCi · ISCi

(2.14)

Where :
VMPPi is the voltage at maximum power point measured in V.
IMPPi is the current at maximum power point measured in A.
VOCi is the Open-Circuit voltage measured in V.
ISCi is the Short-Circuit current measured in A.

Vyi = VOCi − Kvi · TCi (2.15)

Where :
VOCi is the Open-Circuit voltage measured in V.
Kvi is the voltage temperature coefficient measured in V/0C.
TCi is the cell temperature measured in 0C.
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Iyi = si ·
[
ISCi + KCi · (TCi − 25)

]
(2.16)

Where :
ISCi is the short circuit current measures in Ampere (A).
KCi is the current temperature coefficient measured in A/0C.
TCi is the PV cell temperature during a certain weather state measured in 0C.

TCi = Ta +
Si

800
· (TNOCT − 20) (2.17)

Where :
Tai is the ambient temperature measured in 0C.
Si is the solar radiation measured in W/m2

TNOCT is the nominal operating temperature measured in 0C.

2.10 | Modeling battery energy storage systems
(BESS)

Battery is defined as a set of electrochemical cells capable of storing energy in chemical
form and converting it back to electrical form when necessary. Power fluctuation in RES-
based systems requires the integration of efficient Energy Storage Systems (ESS) [4]. Figure 2.1
illustrates the electrical equivalent circuit of a battery.

FIGURE 2.1 – Equivalent circuit of a battery energy storage system [4, 5]
.

Where :
nb is the number of batteries, Vbat is the voltage of the battery, Ibat is the current of the battery,
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Ebat is the electromotive force, and Rbat is the internal resistance of the battery.

The voltage across the battery terminals represented by the electrical equivalent circuit in figure
2.1 can be expressed as :

Vbat = nbat ∗ Ebat + nbat ∗ Rbat ∗ Ibat (2.18)

2.10.1 | Modeling the capacity of a BESS
To describe the physical phenomena that govern the operation of a battery energy storage

system (BESS), it is important to consider the influence of temperature T, therefore, the mathe-
matical model that expresses the capacity of a battery Cbat (in Ah) can be written as [4, 5] :

Cbat =
1.76 · C10

1 + 0.67 ·
(

I
I10

)0.9 · (1 + 0.005 · ∆T) (2.19)

Where : ∆T is the battery heating compared to ambient temperature 25oC (assumed to
be identical for all battery elements), I10 is the Nominal battery current (in A) given by the
manufacturer, I is the average battery discharge current, and C10 is the Nominal capacity of
the battery (in Ah) at constant current discharge for 10 hours (given by the manufacturer)
expressed as [4, 5, 63] :

C10 = 10 · I10 (2.20)

Battery capacity Cbat and state-of-charge SOC are two closely related variables. The state of
charge of a battery is defined as a function of the capacity and amount of charge missing Qm,
expressed as [4, 5, 63] :

SOC = 1 − Qm

Cbat
(2.21)

being

Qm = Ibat · t (2.22)

Where t is the operating time of the battery.
Perfect knowledge of the real state-of-charge SOC(t) at the time of interest t depends on
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knowledge of the initial state-of-charge SOC0(t0) at the starting point t0. Therefore, the ma-
thematical model for calculating the state of charge for an ideal battery neglecting the losses
during charging, discharging and self-discharge during storage time can be expressed as [64] :

SOC(t) = SOC(t0) +
∫ t

to

(
Ibat
Cbat

)
dτ (2.23)

Considering the charge, discharge and self-discharge losses during the storage time, we
will have [64] :

SOC = SOC0 ·
[
1 − σ

24
· (t − t0)

]
+
∫ t

t0

(
Ibat · ηbat

Cbat

)
dτ (2.24)

Where, σ is the self-discharge rate, it is usually recommended to assume 0.2%/day, ηbat is
the battery charging and discharging efficiency, normally assumed 90% during charging and
100% during discharge.

A lead-acid battery is an electromechanical device based on chemical processes influenced
by temperature, the temperature variation proportionally affects the battery capacity (in Ah)
which decreases with the decrease in temperature, i.e. the battery capacity is a function of
temperature and can be expressed as [63, 4, 5] :

Cbat = C
′
bat · [1 + δC · (Tbat − 298.15)] (2.25)

Where Cbat is the battery capacity (in Ah) when the battery temperature is Tbat, C
′
bat is the

rated (or Nominal) capacity of the battery provided by the manufacturer, and δC is the normal
operating condition, generally assumed to be 0.006 (δC = 0.6%/0C).

A realistic modeling of a battery energy storage system should consider the losses at all stages
of the system, however, if we neglect the cable losses, the battery current Ibat can be expressed
as :

Ibat =
PSolar + PWind · ηrecti f ier − PLoad/ηinverter

Vbat
(2.26)

Where PSolar is the power the power of the PVG (in Watt), PSolar is the power of the WTG (in
W), PLoad is the power demanded (or consumed) by the load (in W), Vbat is the battery voltage,
ηrecti f ier is the rectifier efficiency, and ηrecti f ier is the inverter efficiency.
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2.10.2 | Battery floating charge voltage modeling
The floating charge voltage V

′
bat (voltage across the battery terminals) can be expressed as a

function of state-of-charge (SOC) as follows [4, 5] :

V
′
bat = a · (SOC)3 + b · (SOC)2 + c · (SOC) + d (2.27)

Considering the effects of temperature on electrochemical processes, the temperature coef-
ficient δV is applied, therefore, the voltage Vbat at the battery terminals can be expressed as :

Vbat = V
′
bat + δV (Tbat − 298.15) (2.28)

The temperature coefficient is normally assumed to be −4mV/0C/2V compared to ambient
temperature 250C

2.10.3 | Modeling the charging and discharging voltage
(i) Battery discharging voltage model

The mathematical model of the discharge voltage of a battery is deduced from the equa-
tions for voltage across the battery terminals (equation 2.18 ) and battery capacity (equa-
tion 2.19), so the equation for the discharging voltage Vd of a battery can be expressed as
[64] :

Vd = [2.085 − 0.12 · (1 − SOC)]− I
C10

·
(

4
1 + I1.3 +

0.27
(SOC)1.5 + 0.02

)
· (1 − 0.007 · ∆T)

(2.29)

(ii) Battery charge voltage model
The battery charging model follows the same structure as the discharge model, differing
in terms of parameter values, so the charging model Vc can be expressed as [64] :

Vc = [2 + 0.16SOC] +
I

C10
·
(

6
1 + I0.86 +

0.48
(1 − SOC)1.2 + 0.036

)
· (1 − 0.025 · ∆T) (2.30)

(iii) Battery voltage model in overcharge regime
The battery voltage in the overcharge regime considers two physical phenomena namely,
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gassing voltage Vg and saturation voltage (or end of charge voltage) Vec.
The mathematical model that represents the battery voltage in the over-charge regime can
be expressed as :

Voverch = nbVg + nb
(
Vec − Vg

)
·
[

1 − exp
(

t − tg

τg

)]
(2.31)

Where tg is the instant after which Vbat−chrg = Vg and τg is a time constant.

The parameters of equation 2.31 can be expressed as :

a) Gassing voltage Vg :

Vg =

[
2.24 + 1.97 ln

(
1 +

Ibat
C10

)]
(1 − 0.002∆T) (2.32)

b) End of charge voltage Vec :

Vec =

[
2.45 + 2.01 ln

(
1 +

Ibat
C10

)]
(1 − 0.002∆T) (2.33)

c) Time constant τg :

τg =
1.73

1 + 852
(

Ibat
C10

)1.67 (2.34)

2.10.4 | Modeling faradic performance

A battery’s ability to store energy is directly related to faradic performance, characterized
by charging performance and discharging performance.

(i) Battery charging efficiency
The mathematical model that represents the variation of the battery charging efficiency
ηc as a function of the state-of-charge SOC and current I can be expressed as :

ηc = 1 − exp

[
a

I
I10

+ b
· (SOC − 1)

]
(2.35)

Where a = 20.73 and b = 0.55 are battery recharge constants determined by fitting the
equation to the data
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(ii) Battery discharging efficiency
The battery efficiency in discharge regime is assumed to be 1.

ηdisc = 1 (2.36)

2.11 | Uncertainties in distributed generation sys-
tems

2.11.1 | Uncertainties in wind turbine generators

Power generation through wind-to-power conversion is normally done through wind tur-
bine clusters that make up the production field, in this sense, the wind power function PW

i of
i-th wind power can be expressed as [65] :

PW
i = gW(vi, θW

i ) (2.37)

Where :
θW

i represents the operating parameters of the i-th wind turbine model provided by the manu-
facturer as coefficients such as vcii , vri , vcoi and Pri .

— Source of uncertainty in wind turbine generators
As mentioned above, the power generation by wind turbines depends on the parame-
ters of wind speed modeled through probabilistic distributions, and the wind turbine
operating parameters modeled through possibilistic distributions. The set of these pa-
rameters constitutes an inevitable source of uncertainty that propagates throughout the
entire power system, making the generation of power an uncertain event.

2.11.2 | Uncertainties in photovoltaic generators

The power generation through the irradiance-to-power conversion is normally done through
modular groupings of photovoltaic cells that make up the production field, thus, the solar
power function of the i-th photovoltaic generator can be expressed as [65] :
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Ps
i = gs(vi, θs

i ) (2.38)

Where :
θs

i represents the operating parameters of the i-th photovoltaic generator provided by the
manufacturer as coefficients such as Kv, Ki, Isc, Voc IMPP, VMPP and TNOCT, including variable
parameters such as ambient temperature Ta.

— Source of uncertainty in photovoltaic generators
Environmental variables such as solar radiation si and ambient temperature ta are based
on historical data sets (measured and recorded) are typically modeled using probability
density functions (pdf), the operating parameters (or operating coefficients) of photovol-
taic generators Kv, Ki, Isc, Voc IMPP, VMPP and TNOCT are provided by the manufacturer
on a limited basis, without detailed information to preserve trade secrets. In addition,
opinions, views, and judgments of experts and specialists must be incorporated which
are obviously inherently inaccurate information. Therefore, it is reasonable to represent
the solar irradiance as a probabilistic variable and the operating parameters (opera-
ting coefficients) as possibilistic variables. The set of factors described above constitute
inevitable sources of uncertainty that propagates through the photovoltaic generation
system, making the generation of output power PS

i an uncertain event.

2.12 | Probabilistic Multi-Model Combination mo-
del

A phenomenon or event can be predicted through deterministic models or probabilistic
models. In forecasting, uncertainty is always present caused by incompleteness of the models
and mismatch between the model and reality. According to [54] it is not possible to design
a model that incorporates all the variables describing a physical phenomena (example : en-
vironment, climate, natural processes), modeling is a process of abstraction, simplification
and interpretation of reality, therefore, model inaccuracy, estimation errors, and measurement
errors of the input variables, will propagate through the system resulting in prediction errors
in the generated output power. Due to the persistent presence of uncertainty even in carefully
designed models, designing a perfect forecasting model is an "almost impossible" task. In the
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literature, uncertainty is described as persistent and omnipotent presence in complex systems,
thus probabilistic modeling has become increasingly significant to quantify such uncertainties
and forecast the output power of the system.

Probability density functions (pdf) as forecasting models are rarely perfect, they have im-
perfections (forecasting inaccuracies) but they also have qualities and advantages, eliminating
forecasting inaccuracies is an impossible task, so instead of looking for perfection in individual
probabilistic models, a statistically valid strategy is to combine models to exploit individual
advantages for the sophistication and improvement of probabilistic forecasting of combined
models. Based on the multi-model combination principle, the combination of k individual
models can be expressed as [54] :

P(y|F1, F2, · · · , FK) =
K

∑
i=1

ωi · Pi(y|Fi) (2.39)

Where :
K is the number of individual models (or member models) participating in the combination, y
is the input dataset to the model, P(y|F1, F2, · · · , FK) is the predictive pdf of y obtained by the
combined model, FK is the K-th member model, ωK in the weight of the k-th member model,
Pi(y|Fi) is the forecast pdf generated by Fi.

2.12.0.1 | Description of Multi-Model Combination (MMC)

— A multi-model combination (MMC) is a grouping of individual models also called a
member model or a single model each containing its respective fit to the dataset of
interest. The set M of K member models fi(x), i = 1, · · · , K can be expressed as :

M = { f1(x), f2(x), · · · , fk(x)} (2.40)

For a dataset of interest, each member model has its particular fit to the data. When the
member models are combined it results in a more skillful model called the multi-model
combination model. If the member models to be combined are probabilistic we have a
probabilistic multi-model combination model also called predictive PDF as
P(dataset| f1(x), f2(x), · · · , fK(x)).

— Each member model fi(x) belonging to the set M participates in the combination with
its particular weight ωi and must satisfy the following conditions :
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(i) The weight of each member model fi(x) must be greater than or equal to 0 and less
than or equal to 1.

0 ≤ ωi ≤ 1 (2.41)

(ii) The sum of the weights of all member models participating in the combination must
equal 1.

K

∑
i=1

ωi = 1 (2.42)

— The main objective of combining single models fi(x) is to explore the advantages of each
single model to build an even more skillful model expressed as
P(dataset| f1(x), f2(x), · · · , fK(x)), so, it is expected that each member model contributes
with its predictive capacity expressed by its predictive pdf P(dataset| fi(x)).

For clarity, we can rewrite the MMC model formula of equation 2.39 as :

P (dataset| f1(x), f2(x), · · · , fK(x)) =
K

∑
i

ωi · Pi (dataset| fi(x)) (2.43)

All member models fi(x) participating in the MMC model must be able to provide a pro-
bability density or have predictive abilities.

2.12.0.2 | Example of an MMC model

Let’s consider an example where we combine three single probabilistic models capable of
providing predictive pdf results having x as input dataset, the multi-model combination model
(MMC) would be expressed as :

P(x| f1(x), f1(x), f1(x)) = ω1 · P(x| f1(x)) + ω2 · P(x| f2(x)) + ω3 · P(x| f3(x)) (2.44)

Where :
— P(x| f1(x)), P(x| f2(x)) and P(x| f3(x)) represent the forecasted probability density func-

tions (pdf’s) obtained by the single probabilistic models f1(x), f2(x) and f3(x) respecti-
vely.

— P(x| f1(x), f1(x), f1(x)) represents the forecasted probability density function (pdf) ob-
tained by combining single probabilistic models f1(x), f2(x) and f3(x).
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— ω1, ω2 and ω3 represent the weight with which each single model f1(x), f2(x) and f3(x)
participates in the combination, respectively.

2.12.0.3 | Akaike Information Criteria (AIC)

On a dataset x, we can test several probabilistic models fi(x) to test the goodness of fit
of each model on such dataset. Each tested probabilistic model has an Akaike Information
Criteria (AIC) value, providing information on how the model is fitted to the dataset. AIC
value of only one model does not provide enough information to formulate an opinion or
conclusion, for the AIC value to be meaningful should be compared with AIC values of other
models tested on the same dataset. Thus, the AIC values of each tested model are compared
and placed in descending order.

The best model is the one with the lowest AIC value [66].

The lower the AIC value, the better the goodness-of-fit. The traditional formulation of the
Akaike information criterion (AIC) is based on maximized likelihood value L(θ) as [67, 66] :

AIC = −2 · ln L(θ) + 2 · K (2.45)

Where :
K is the number of estimable parameters in the model, L(θ) is the maximized likelihood value.

2.12.0.4 | Computation of Model likelihood and Akaike weights

Consider a set of AIC values from all individual probabilistic models tested on a data
set, the difference between each value in the set and the minimum value of the same set is
expressed as [67] :

∆i = AICi − min(AIC) (2.46)

Where the min(AIC) is the smallest value of AIC in the model set.
The likelihood of each probabilistic model over the data set can be expressed as [67] :

L ( fi(x)|dataset) = exp
(
−∆i

2

)
(2.47)

Akaike weights can now be calculated from the following equation [67] :
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ωi =
exp

(
−∆i

2

)
∑M

r=1 exp
(
−∆i

2

) (2.48)

Where M is the number of models.

2.13 | Related Work
For the elaboration of this thesis, a wide range of publications on Renewable Energies was

consulted in the form of articles, books, online content, official reports from governmental
authorities and non-governmental organizations, as the list of references attests. However, four
(4) studies were taken as related studies (reference studies) namely :
[4, 5, 54, 63, 68].

(i) Overview of [4]
The authors present simplified mathematical models that govern the operation of a bat-
tery based on Lead Acid technology, simulating battery charging and discharging beha-
vior by varying electrical parameters.

(ii) Overview of [5]
This study simulates the physical operation of an Energy Storage System (ESS) integra-
ted in a hybrid system, using mathematical modeling and graphical representation of
the performance curves of each modeled parameter, and evaluates the influence of each
parameter on the performance of the Energy Storage System.

(iii) Overview of [54]
In this study, a complex probabilistic model is presented, built by the Multi-Model combi-
nation principle, where several probabilistic models are combined to explore individual
predictive qualities of each model, aiming to improve the wind power forecast. This
study demonstrates the superiority of probabilistic models over deterministic models in
predictive applications

(iv) Overview of [63]
The authors proposed a battery model as a tool to simulate and optimize photovoltaic
systems, present normalized equations to determine the battery capacity that allows ge-
neralizing its use for any type and size of batteries, and evaluated the battery voltage

34



Chapitre 2. Background & Literature Overview 2.13. Related Work

during the charging processes, overload and discharge and predict the performance of
solar systems under different operating conditions.

(v) Overview of [68]
This paper proposes a probabilistic power curve model, to represent the probability den-
sity function of power output at various wind speed, using Monte Carlo simulation to
generate random predicting power output, and found performs better than other deter-
ministic models and probabilistic models.

In studies [4, 5, 63] we took advantage of the principles, models and results regarding the
parameters of operation and performance of the battery in charging and discharging regimes.
In the [54, 68] we took advantage of the probabilistic modeling approach (use of predictive
models) to predict the power generation capacity in a generation system based on renewable
energy sources.
In general, all articles were useful in conceiving the idea of the proposed solution, however the
five articles briefly described above were taken as reference in the formulation of the research
problem, and in the use of probabilistic and mathematical models.

2.13.0.1 | Similarities with related work

In this thesis we use an approach of equations (or models) similar to those available in the
literature, such that the models were compared and validated based on the articles taken as
reference. We use the simulation and optimization models available in these reference articles
to build a hybrid generation approach

2.13.0.2 | Differences with related work

The equations (models) used in this thesis are essentially similar, however, differentiation
approaches can be noted regarding the assumptions during the deduction of the equations. A
notable difference lies in the fact that this thesis essentially focuses on the analysis of all the
parameters of the models as a function of the hourly variation of the weather.
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2.14 | Articles published during the PhD program
(i) First article : [16]

(a) Title : Rural Electrification in Mozambique : Challenges and Opportunitie

(b) Published in : ICSREE 2021 : 6th International Conference on Sustainable and Rene-
wable Energy Engineering

(c) Date of Conference : 5th May 2021 to 7th May 2021

(d) Publication date : July 2021

(e) Conference Location : France, Strasbourg

(ii) Second article : [69]

(a) Title : Energy Transition X Energy Inclusion : A Community Energy Concept for
Developing Countries

(b) Published in : 2021 IEEE International Humanitarian Technology Conference (IHTC)

(c) DOI : 10.1109/IHTC53077.2021.9698969

(d) Date of Conference : 2-4 Dec. 2021

(e) Date Added to IEEE Xplore : 11 February 2022

(f) Conference Location : United Kingdom

(iii) Third article : [70]

(a) Title : Social innovation for community energy in developing countries – new models
and a Mozambican case study

(b) Published in : MIT-2022 (Energy Proceedings)

(c) Date of symposium : July 5-8, 2022

(d) Publication date : July 2021

(e) Conference Location : Cambridge, USA

NOTE : The published articles are attached in the indexing section of this thesis in PDF
format
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3

Materials & Methods

3.1 | Introductory note to the chapter
In this chapter is presented the modeling of a hybrid power generation microgrid com-

posed of two generation subsystems namely, the Wind Turbine Generator (WTG) with wind
speed v as the input variable, the Photovoltaic Generator (PVG) with solar radiation G as an
input variable. A Battery Energy Storage System (BESS) is integrated into the microgrid. The
generation side consisting of WTG, PVG and BESS is designed to satisfy the demand load
with variable power consumption. Each element that constitutes the microgrid considered in
this thesis is modeled considering particular characteristics and parameters. The influence of
uncertainty on operating and performance parameters is evaluated to describe the behavior of
the microgrid in the generation of output power as a function of the hours of day. The detailed
description is presented in section section 3.2 below.

3.2 | Description of the power microgrid
This thesis is fundamentally based on the modeling of a Hybrid Solar-Wind Power Genera-

tion System (HSWPGS), composed of wind turbine generators (WTG),Photo-Voltaic generators
(PVG) with an Energy Storage System (ESS) coupled to the power microgrid. It is an isolated
microgrid, without connection to the conventional power grid based on fossil energy sources
(coal, oil and gas), i.e., it depends solely and exclusively on renewable energy sources (RES)
namely, wind speed v and solar radiation s without any external source of energy supplement.
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It is a completely isolated microgrid, which despite the stochastic variations (variability and
intermittency) of the renewable energy sources (RES) on which it depends, must fully respond
to consumer demand, which in turn presents a pattern of stochastic variation that is difficult
to predict precisely. The diagram in Figure 3.1 represents a microgrid configured as HDRES
composed of 5 main parts described below :

FIGURE 3.1 – Generic diagram of a hybrid Battery-Solar-Wind power generation system

(i) Environment (real world)
The environment is a complex system with an enormous amount of variables that deter-
mine the state of the weather at a given instant. Based on the principle that modeling is
a process of abstraction, simplification, and interpretation of reality [54], for this thesis,
the environmental variables of interest are wind speed v, solar radiation G and ambient
temperature ta.

(ii) Generation systems
Is the part of the system where the RES-to-Power conversion takes place as :
— Wind-to-Power Conversion : Wind speed vi (in m/s) is converted into Wind Turbine

Generator (WTG) output power Pwtg (in kW).
— Irradiation-to-power conversion : Solar radiation G is converted into output power

of the Photovoltaic generator (PVG) Ppvg, influenced by the ambient temperature ta.
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(iii) Energy Storage System (ESS)
The HSWPGS microgrid, considered in this thesis, has an Energy Storage System based
on a battery bank (also called Battery Energy Storage System-BESS) that performs the
task of compensating the generation deficit due to generation fluctuations, and damping
the consumption overload and demand peaks. The task of compensating and dampening
is more significant at times of unfavorable weather conditions for power generation,
example : windless and cloudy days (days with reduced or no availability of wind speed
and solar radiation).

(iv) Control and monitoring system
In an isolated microgrid, the power balance between generation G(t) and demand D(t) as

G(t) = D(t) (3.1)

is a difficult and highly unstable condition as both sides (generation and demand) have
variations that are difficult to predict accurately, i. e., the prediction is persistently im-
precise. The equilibrium condition described by equation 3.1 varies instantly over time.
The Energy Storage System (ESS) should compensate for the generation deficit, buffer
consumption overload and demand spikes in real time to avoid power supply fluctua-
tions, interruptions and blackouts, including system collapse. The compensatory dyna-
mics for power balance depends on the coupling of a control and monitoring system
capable of making decisions locally in real time.

(v) Demand and consumption side
While the variation of power generation is caused by the variation of environmental
variables, the variation of power demand is caused by human factors such as standard
of living, habits, way of life, holding of social events, schedules of school and work
activities, weather forecast, thus, the power demand can be relatively predictable despite
the uncertainty

In the following sections, the modeling of the parts that make up the HSWPGS illustrated
in Figure 3.1 is presented in the following order :

(i) Description and characterization of input data

(ii) Modeling the power generated by a Wind Turbine Generator (WTG)

(iii) Modeling the power generated by a photovoltaic cell (PVG)
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(iv) Modeling the Energy Storage System (ESS)

(v) Probabilistic modeling of the power generated in the HSWPGS

3.3 | Description and characterization of input
data

3.3.1 | Input data source
The input data used in this thesis were provided by the Instituto Nacional de Meteorologia

de Moçambique (National Institute of Meteorology of Mozambique), collected at the meteo-
rological observation, measurement and recording station of Maputo province in southern
Mozambique.
The data are hourly average values, recorded hourly over the 24 hours of the day, i.e., for each
hour of the day we have a set of data corresponding to the average of that hour observed daily
for two years, between January 1, 2019 and December 31, 2020.

3.3.2 | Input data structure
The data (wind speed v, solar radiation G and ambient temperature ta) are structured in

column-oriented matrix form with the following interpretation :
— Each row i of the matrix represents the i-th day over the two years of observation

01/01/2019 to 12/31/2020 corresponding to 731 days. Each row of the matrix is a vector
containing hourly averages over the 24 hours of the day

— Each column j of the matrix represents the j-th hour of the 24 hours of the day, the
average value of each hour is observed and recorded during the two years (2019-2020)

The main objective of this thesis is to evaluate the uncertainty and its influence on the
parameters of the subsystems and on the output power, to evaluate the sensitivity of the
parameters of the subsystems as a function of uncertainty, and produce a risk analysis of the
power generation system as a function of environmental conditions throughout the 24 hours
of the day.
The following generic matrices illustrate the data structure of wind speed v, solar radiation G
and ambient temperature ta :
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vi,j =


v1,1 v1,2 · · · v1,n

v2,1 v1,2 · · · v2,n
...

... . . . ...
vm,1 vm,2 · · · vm,n

 Gi,j =


G1,1 G1,2 · · · G1,n

G2,1 G2,2 · · · G2,n
...

... . . . ...
Gm,1 Gm,2 · · · Gm,n



tai,j =


ta1,1 ta1,2 · · · ta1,n

ta2,1 ta2,2 · · · ta2,n
...

... . . . ...
tam,1 tam,2 · · · tam,n


(3.2)

Where, G is the solar irradiance, v is the wind speed, ta is the ambient temperature, i is the
indexing for days (i-th day), j is the hour index (j-th hour), m is the total number of days (in
this case m = 731 days), n is the number of hours in the day (n = 24 hours).

3.3.3 | Definition of data vectors
— Vector for hours h

h{:, j} = {h1, h2, · · · h23, h24} (3.3)

— Vector for days d
d{i, :} = {d1, d2, · · · , d23, d24}T (3.4)

For the purposes of this thesis, the input data are organized and structured as column-
oriented matrices and each column represents a variable containing the model’s input data (24
sets of input data equivalent to 24 hours a day).

3.3.4 | Data pre-processing
The pre-processing of the input data basically consisted of verifying the possible existence

of negative values due to a registration error in the collection source, verification of values
that are manifestly suspicious or excessively outside the admissible ranges as environmental
variables, however, despite the notorious existence of extreme weather events, outliers were
not removed as a way to maintain the originality of the data and avoid introducing a "fictitious"
normality of the input data, leading to poor decision making.
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3.3.4.1 | Wind speed input data

The Wind speed data v was recorded using an anemometer installed at a reference height
hre f of 10 meters, however, the height of the selected wind turbine generator (also called hub
height) h is 50 meters, therefore, it is necessary to adjust the vertical wind speed profile to
estimate the wind speed at the desired height (hub height) using the power law described
in Equation 2.12.Therefore, the hourly distribution of wind speed v at the height of the wind
turbine generator (hub wind speed) throughout the 24 hours of the day is shown in the figure
3.2 :

FIGURE 3.2 – Wind speed profile

According to the Global Wind Atlas (https ://globalwindatlas.info/), Mozambique does not
have a significant global wind energy potential when compared to countries such as Ireland,
Denmark, and those of the regions of North Africa and the south of Latin America.
The behavior of the average wind speed intensity curve shows that Mozambique is a country
with moderate wind potential, according to [15] Mozambique has a medium-low intensity
wind regime with a speed predominantly between 4 and 6 meters per second at a height of
80 meters above ground level, which, despite not being an expressive potential, gives Mozam-
bique a confirmed equivalent wind power potential of 5 GW.
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The hourly distribution of the average wind speed illustrated in figure 3.2 illustrates the exis-
tence of outliers (indicated by red crosses at each hour) that indicate the occurrence of extreme
or unusual weather events. Mozambique’s wind potential, which is not very expressive, de-
mands a careful choice of Wind Turbine Generator (WTG) to maximize power generation.

3.3.4.2 | Solar radiation input data

Mozambique has a very high solar potential, a consistent solar radiation regime is available
throughout the entire territory, placing Mozambique as one of the countries with the highest
solar potential in the world [69]. Figure 3.3 illustrates the distribution of hourly solar radiation
data with a significant variation over the hours of the day, the maximum average of solar
radiation G is observed around 13 :00 in the afternoon.

FIGURE 3.3 – Solar radiation profile

According to [15] solar radiation is the main renewable resource available in Mozambique,
the global radiation in the horizontal plane varies between 1785 and 2206 kWh.m−2.year−1, is
one of the highest in the world, giving Mozambique a global solar power equivalent to 23 TWp.
The behavior of the average curve of the hourly distributions of solar radiation, show that the
maximum output power of the PVG is most likely at 13h00 including surrounding hours.
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3.3.4.3 | Ambient temperature input data

Mozambique is generally a country with a predominantly humid tropical climate throu-
ghout the year with average annual temperatures above 20◦C ranging between 24◦C and 26◦C
[71]. In this context, the distribution of the average hourly temperature in Maputo is illustrated
in the following figure 3.4 :

FIGURE 3.4 – Ambient temperature profile

According to [71] the average maximum temperature in Maputo is around 240C, rarely
dropping below 200C or rising above 290C, and daily minimum temperatures hover around
170C, rarely dropping to 140C or rising above 200C. In this sense, the hourly temperature data
used in this thesis (curve of figure 3.4) are reasonably adjusted to the intervals described in
[71], thus, by evaluating the data from the solar panel manufacturers’ catalogs, it can be said
that the Maputo province in Mozambique (where the data were collected) has considerable
solar potential for the installation of a PVG farm to generate power mainly in the afternoon as
illustrated by the behaviour of the curve of average distributions shown in figure 3.4.

44



Chapitre 3. Materials & Methods 3.4. RES-to-Power Conversion

3.3.5 | Input data versus output data

In HSWPGS microgrid, wind speed v, solar radiation G and ambient temperature ta are the
variables connecting the microgrid to the environment to generate power, wind speed feeds
the WTG to generate output power Pwtg, and solar radiation and ambient temperature feed the
PVG to generate output power Ppvg. The following section 3.4 describes the models and the
results obtained in the modeling of the output power Pwtg and Ppvg.

3.4 | RES-to-Power Conversion

3.4.1 | Wind-to-Power Conversion

This subchapter addresses the conversion of available wind power into electrical power,
maximizing the wind potential available at the WTG farm site depends on the correct selection
(or choice) of the WTG with parameters that best fit the wind profile of the site, since the output
power performance curve should be compatible with the wind speed profile of the location.
The output power of a WTG depends not only on the wind speed v at the installation site, but
also depends on the parameters of the output power performance curve, especially in the non-
linear part of the curve between the cut-in speed vci and the rated speed vr.
After evaluating the wind profile illustrated in figure 3.2, which consisted essentially in veri-
fying the prevailing minimum, average and maximum values, for this thesis the ENERCOM
E-53, 800 kW is selected with the following technical specifications and test data provided by
the manufacturer :
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Wind Power P Power Coef.
(m/s) (kW) Cp (dimensionless)

1 0.0 0.00
2 2.0 0.19
3 14.0 0.39
4 38.0 0.44
5 77.0 0.46
6 141.0 0.48
7 228.0 0.49
8 336.0 0.49
9 480.0 0.49

10 645.0 0.48
11 744.0 0.42
12 780.0 0.34
13 810.0 0.27
14 810.0 0.22
15 810.0 0.18
16 810.0 0.15
17 810.0 0.12
18 810.0 0.10
19 810.0 0.09
20 810.0 0.08
21 810.0 0.06
22 810.0 0.06
23 810.0 0.05
24 810.0 0.04
25 810.0 0.04

(a) Manufacturer’s Test Data.

Parameter Abbreviation Value-Unit

Rated Power Pr 800 kW
Rotor diameter dr 52.9 m

Tower/Hub height h 50 m
Cut-in speed vci 2 m/s
Rated speed vr 13 m/s

Cut-out speed vco 25 m/s
Max Power Coeff. Cp 0.49

(b) Technical specifications.

TABLE 3.1 – Technical information of ENERCON E-53, 800 kW [8, 9].

The test data provided by the manufacturer (table 3.1a) using the E-53 wind turbine gene-
rator (table 3.1b) can be graphically illustrated by the following figure 3.5 :
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FIGURE 3.5 – Power curve and power coefficient curve of E-53, 800 kW

Applying the cubic spline interpolation method (described in section 2.9, Equation 2.11) on
the test data provided by the manufacturer (table 3.1a) four piecewise functions were obtained
that compose the conversion model from wind speed v to estimated output power of the wind
turbine generator Pwtg graphically represented by figure 3.6 as :
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FIGURE 3.6 – Piecewise functions from manufacturer’s test data

Combining (doing partial sums) of all four piecewise functions illustrated in Figure 3.6 we
will obtain a complete model for converting wind speed v into estimated output power Pwtg of
the E-53 Wind Turbine Generator (WTG) as shown in the curve of figure 3.7.
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FIGURE 3.7 – Cubic spline function from manufacturer output power data

The mathematical model represented by the curve in figure 3.7 is the power performance
curve of the E-53 WTG with technical specifications illustrated in table 3.1b. Is the model from
which the wind speed v is converted to the estimated hourly output power in the 24 hours of
a day over the two years (from January 1, 2019 to December 31, 2020). similarly to the wind
speed data, the estimated power output of the WTG is structured in a column-oriented matrix
form, generically represented as :

v(i,j) =


v1,1 v1,2 · · · v1,n

v2,1 v2,2 · · · v2,n
...

... . . . ...
vm,1 vm,2 · · · vm,n

 Wind-to-Power−−−−−−−−−−→
Conversion Model

Pwtg(i,j) =


P1,1 P1,2 · · · P1,n

P2,1 P2,2 · · · P2,n
...

... . . . ...
Pm,1 Pm,2 · · · Pm,n


(3.5)

Where, vi,j represents the matrix of hourly wind speed data with days and hours indexes
(in m/s), Pwtg(i,j) represents the estimated hourly power output of the WTG in kW, i represents
observation days and j represents the observation hours.
Applying the wind-to-power conversion model represented by the curve in figure 3.7, the
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WTG output power matrix was obtained, the hourly distributions are illustrated in figure 3.8
below :

FIGURE 3.8 – Hourly distribution of WTG output power

3.4.2 | Solar-to-Power Conversion

Maximizing the solar potential available at the WTG farm site depends on the correct selec-
tion (or choice) of the photovoltaic cells with electrical parameters that best fit the solar radia-
tion profile of the site, since the output power performance curve (P-V and I-V characteristics)
should be compatible with the solar radiation profile of the location, however, the decision to
select the type of photovoltaic panels is dependent on available information, often insufficient
for an absolutely correct decision. In many cases, the decision on the selection of photovoltaic
modules is made by the method of direct comparison of data from the manufacturers’ catalogs,
which obviously does not guarantee that the selected PV module is the best for a specific
application, as this method ignores fundamentals aspects such as, deep knowledge about the
resistance to losses, difference between the manufacturing and operating environments, in
addition, comparison in absolute terms is always impossible [72].
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In this thesis, the selection of the photovoltaic module was made through the direct comparison
of catalogs from several manufacturers, evaluating electrical and temperature characteristics
compatible with the solar radiation and ambient temperature input data available for this
thesis. On this basis, the solar panel with the following characteristics is selected :

— PV module name :
RECOM 380 Wp, Mono crystalline module, Autarco MC-EU series solar pane : S1.MC305(B)-
EU

— Characteristics of the selected PV module

Description Abbrev Value

Nominal power output (Wp) Pmax 305
Power output tolerance (W) ∆Pmax 0/+3%

Open circuit voltage (V) voc 39.76
Short circuit current (A) Isc 9.76
Max. power voltage (V) Vmp 31.62
Max. power current (A) Imp 9.72
Module efficiency (%) η 18.65

(a) electrical characteristics

Description Abbrev Value

Isc α +0.037%/0C
Voc β −0.299%/0C

Pmax Y −0.416%/0C
TNOCT 480(+/−2◦C)

Temp range −400C to 800C

(b) temperature characteristics

TABLE 3.2 – Technical information of Autarco MC-EU, S1.MC305(B)-EU

Based on solar radiation G and ambient temperature ta data as input variables of the selec-
ted PVG whose electrical and temperature characteristics are illustrated in table 3.1, the esti-
mated hourly output power of the Ppvg(i,j) was obtained by the modeling procedure described
in section 2.9.2. Similarly to the solar radiation data, the estimated power output of the PVG is
structured in a column-oriented matrix form, generically represented as :
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G(i,j) =


G1,1 G1,2 · · · G1,n

G2,1 G2,2 · · · G2,n
...

... . . . ...
Gm,1 Gm,2 · · · Gm,n



ta(i,j) =


t1,1 t1,2 · · · t1,n

t2,1 t2,2 · · · t2,n
...

... . . . ...
tm,1 tm,2 · · · tm,n





Solar-to-Power−−−−−−−−−−→
Conversion Model

Ppvg(i,j) =


P1,1 P1,2 · · · P1,n

P2,1 P2,2 · · · P2,n
...

... . . . ...
Pm,1 Pm,2 · · · Pm,n



(3.6)

Applying the sequence of irradiance-to-power conversion models described in section 2.9.2,
the PVG output power matrix was obtained, the hourly distributions are illustrated in figure
3.9 below :

FIGURE 3.9 – Hourly distribution of PVG output power
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3.4.3 | Comment on Pwtg and Ppvg

Making a comparative analysis between the input data curves and the output power curves,
comparing wind speed and wind turbine output power curves, similarly, comparing the curves
of solar radiation and the output power of the photovoltaic panel, a direct proportionality bet-
ween the input variables and the output variables can be observed. The fluctuations observed
in the input variables of wind speed and solar radiation are propagated by the system and can
be proportionally observed in the output power of the wind turbine Pwtg and the photovoltaic
generator Ppvg.

The power generated in each subsystem is an uncertain variable, as it varies instanta-
neously (in this case, hourly), depending on the variability of renewable resources, as a conse-
quence of the instantaneous variation of the weather.

An important aspect to take into account is the fact that the output power of the wind turbine
generator Pwtg and the output power of the photovoltaic generator Ppvg illustrated in figures
3.8 and 3.9 respectively, are both obtained through deterministic models. According to [54]
deterministic models can hardly be perfect for the forecasting task, as they ignore the existence
of sources of uncertainty, i.e., do not provide quantified uncertainty information. Therefore, to
account for the persistently existing uncertainty caused mainly by the instantaneous variations
of the RES (wind speed v and solar radiation G) It is essential to introduce an approach to
modeling the propagation of uncertainty about the power produced and about the operating
parameters of each subsystem, including risk analysis and probabilistic modeling.

3.5 | Modeling the demand load
The power consumption data used in this thesis are real consumption in the year 2018,

in the isolated microgrid in the district of Mecula in the province of Niassa in northern Mo-
zambique. In the process of modeling the demand load variation profile, we considered two
scenarios, namely :

(i) Consumption of an essentially agrarian village without industrial units

(ii) Consumption of an agrarian village including industrial units
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3.5.1 | Consumption of an agrarian village

FIGURE 3.10 – Day-Hour consumption plot FIGURE 3.11 – Load as function of hour of the
day

Figures 3.10 and 3.11 illustrate Consumer demand as a function of the hour of the day, in
an agrarian village (kW)

The pattern of power consumption in Mozambique is intrinsically related to the way of life
(habits and practices) and the socioeconomic conditions of local communities. In this case,
the power consumption throughout the day has a very slight pattern of variation. The drastic
increase in consumption (with some peaks in demand) is registered around 17 :00 (end of the
day and beginning of the night), when communities return to their homes after their work
activities throughout the day.

The mean value and the standard deviation of the consumer load over the two years are
35.3kW and 10.3kW respectively. The consumer lad shows high variations over the hours.
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3.5.2 | Consumption of an industrial village

FIGURE 3.12 – Day-Hour consumption plot
FIGURE 3.13 – Load depending on the hours
of day

Figures 3.12 and 3.13 illustrate Consumer demand as a function of the hour of the day, in a
somewhat industrialized village (kW).
The mean value and the standard deviation of the consumer load over the two years are
186.5kW and 65.4kW respectively. The consumer lad shows high variations over the hours.

If we consider the hypothesis of an agrarian village with small-scale industrial units, the power
consumption curve has an increasing trend throughout the day (with peaks around midday)
due to the increase in the intensity of industrial activities. At night, the power consumption
curve has a downward trend, with minimal consumption due to low (or no) industrial activity.
It is assumed that the minimum values observed are only the power consumption in the
residential sector.

3.6 | Mathematical modeling the photovoltaic pa-
nel

The output power of a photovoltaic generator Ppvg depends fundamentally on two input
variables, namely, solar radiation G and ambient temperature ta [57, 73, 56], additionally, it is
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characterized by operating parameters normally provided by the manufacturer. When dedu-
cing equations in the next step, all electric currents are in A, voltages in V, powers in W and
temperatures in capital letter T in K, or temperature in lowercase letter t in ◦C.

3.6.1 | Parameters of the photovoltaic solar panel manufacturer

The photovoltaic panel is made of np parallel and ns series cells. The input parameters are
characteristics of each photovoltaic cell or of the photovoltaic panel. The characteristics of panel
are provided by the solar PV panel manufacturer :

— Pmax, the nominal power output (Wp : Watt peak at 1000 W m−2),
— Voc, the open-circuit voltage (V),
— Isc, the short-circuit current (A),
— Vmpp, the voltage at maximum power point (V),
— Impp, the current at maximum power point in (A),
— kIsc, the intensity current temperature coefficient, (°C−1),
— kVoc, the voltage temperature coefficient (°C−1),
— kPmax, the maximum power temperature coefficient (°C−1),
— tnmot, the Nominal Operating Cell Temperature (K),
— ns, the number of series cells,
— np, the number of parallel cells,

These parameters are provided by the manufacturer under two conditions ass :

— Nominal Operating Cell conditions : tnoc = 20◦C, for Gnoc = 800W m−2 solar irradiance.
— Standard testing conditions : tstd = 25◦C, for Gstd = 1000W m−2 solar irradiance.

The table below illustrates in detail the electrical and thermal characteristics of the selected
photovoltaic cell.

56



Chapitre 3. Materials & Methods 3.6. Mathematical modeling the photovoltaic panel

RECOM - Black Panther
Mono crystalline module RCM-380-6MA

Electrical characteristics
Testing conditions STC NMOT

Pmax, nominal power output (Wp at 1000 watt.m−2) 380 284.2
Vmpp, maximum power voltage (V) 40.1 37.3
Vmpp, maximum power current (A) 9.48 7.62

Voc, open-circuit voltage (V) 48.5 45.3
Isc, short-circuit current (A) 9.93 8.02

Thermal characteristics
kPmax, Pmax temperature coefficient (0C−1) -0.37%
kVoc, Voc temperature coefficient (0C−1) -0.34%

kIsc, Isc temperature coefficient (0C−1) +0.06%
Operating temperature (0C) -40 to +85

tnoct, Nominal Operating Temperature (NMOT, 0C) 42 ± 2

G, irradiance (watt/m−2) Gstd = 1000 Gnoc = 800
t, irradiance (0C) tstd = 25 tnoc = 20

TABLE 3.3 – Manufacturer characteristics of a photovoltaic panel (mono crystalline module).
The panel performance declines linearly of 0.65% on 2-25 years. The module efficiency is 19.2%.

The photovoltaic cell parameter data provided by the manufacturer provide three notable
points of the I-V characteristic to consider, namely :

— For I = 0, we have the Open-Circuit Voltage at (Voc, 0)
— For V = 0, we have the Short-Circuit Current at (0, Isc)

— Power = Pmax at (Vmpp, Impp)

3.6.2 | Photovoltaic solar panel model

A simple photovoltaic cell can be represented by an electrical equivalent circuit as shown
in Figure 3.14 below.
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FIGURE 3.14 – The electrical equivalent circuit of a photovoltaic cell [3, 6].

It is important to highlight that the electrical circuit in figure 3.14 represents a simple photo-
diode (or photocell), a solar panel is composed of a set of photodiodes connected in series or in
parallel. According to [6], the number of cells connected in parallel np is directly proportional
to the photovoltaic current Iph (the greater the number of photovoltaic cells connected in
parallel, the greater the photovoltaic current), while, photovoltaic cells connected in series ns

are directly proportional with the output voltage of a photodiode Vph (the greater the number
of photovoltaic cells connected in series, the greater the output voltage of the photodiode).

The characteristic I-V equation deduced from the basic electrical circuit of a photovoltaic cell
ilustrated in figure 3.14 bellow, can be expressed as [74] :

I = Iph − I0
[

exp
(

V + RsI
ns.Vt.a

)
− 1
]
− V + RsI

Rp
, (3.7)

Where :
Iph is the photovoltaic current produced by solar irradiance, I0 is the reverse saturation cur-
rent of the array (leakage current), Rs and Rp are the equivalent series and parallel electrical
resistances of the array, and a is an ideality constant which depends on the technology used to
produce the panels as ilustrated in the table 3.4 below [10] :
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Technology Value of "a"

Si-mono 1.2
S-poly 1.3
a-Si :H 1.8

a-Si :H tandem 3.3
a-Si :H triple 5

CdTe 1.5
CIS 1.5

AsGa 1.3

TABLE 3.4 – Diode ideality constant A as a function of the technology of the photo-voltaic cell
[10, 11].

In equation 3.7, the parameter Vt represents the temperature voltage expressed as :

Vt =
kB · Tc

q
(3.8)

where
q = 1.60217646e − 19C is the electron charge, kB = 1.3806503e − 23J K−1 is the Boltzmann
constant. Tc is the temperature of the cell (supposed to be the junction temperature).
The photocell converts solar radiation s into photovoltaic current Iph, however, it is influenced
by the ambient temperature Ta. The temperature of the photovoltaic cell TC can be expressed
as :

Tc = Ta + (tnmot − tnoc) ·
G

Gnoc
, (3.9)

Where :
G is the solar irradiation, Gnoc and tnoc are the solar irradiation and the temperature in the
nominal operating condition, and tnmot is the operating temperature.

The solar panels are connected in series, which allows increasing the voltage in order to meet
the minimum operating requirements of the inverter. If the solar modules were connected in
parallel, the positive terminal of one module is connected to the positive terminal of another
module, which increases the amperage of the system, that’s why we highlight equations for
solar panels connected in series.
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3.6.2.1 | Remarkable points

The I − V characteristic of the photovoltaic panel pass through the remarkable points :
— (0, Isc), therefore :

Isc = Iph − I0
[

exp
(

Rs.Isc
ns.Vt.a

)
− 1
]
− Rs.Isc

Rp
, (3.10)

— (Voc, 0) :

0 = Iph − I0
[

exp
(

Voc
ns.Vt.a

)
− 1
]
− Voc

Rp
. (3.11)

— (vmpp, impp) where the power is equal to pmax :

impp = Iph − I0
[

exp
(

vmpp + Rs.impp

ns.Vt.a

)
− 1
]
−

vmpp + Rs · impp

Rp
, (3.12)

— Moreover the maximum of the P−V characteristic occurs at the remarkable point (vmpp, impp).
The power is :

P = V.I = V.Iph − V.I0
[

exp
(

V + RsI
ns.Vt.a

)
− 1
]
− V.

V + Rs.I
Rp

. (3.13)

Therefore :

pmax = vmpp.Iph − vmpp.I0
[

exp
(

vmpp + Rsimpp
ns.Vt.a

)
− 1
]

−vmpp.
vmpp + Rs.impp

Rp
(3.14)

— The maximum of P − V curve occurs at the vanishing of the derivative dP/dV. The
derivative dP/dV = 0 will provide extreme points, however, in this case only the
maximum power is of interest, thus Pmax = max

(
dP
dV = 0

)
, where dP

dV is expressed as :

dP
dV

= −
(Is.Rp.Vt + Is.Rp.V) exp

( V
ns.Vt.a +

I.Rs
Vt
)

Rp.ns.Vt.a
−

(2V + I.Rs + (−Is − Iph) .Rp) ns.Vt.a
Rp.ns.Vt.a

. (3.15)

Therefore, we obtain :
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0 = −
(Is.Rp.ns.Vt.a + Is.Rp.vmpp) exp

(
vmpp

ns.Vt.a +
impp.Rs
ns.Vt.a

)
Rp.ns.Vt.a

−

(2vmpp + impp.Rs + (−Is − Iph) .Rp) ns.Vt.a
Rp.ns.Vt.a

(3.16)

Remark 3.1. Therefore, we have four equations that can be used to calculate the unknowns
(Iph, I0, Rs, Rp) and possibly a. These equations are not linear.

In the following we will use the above equations to find the unknowns. For this we will
use Particle Swarm Optimization Method, bio-inspired algorithm that searches for an optimal
solution in the solution space.i.e., iteratively optimizes a problem improving a candidate solu-
tion in relation to a known measure of quality. To find the intervals of search, firstly, we have
to evaluate some approximated solutions.

3.6.3 | Approximated solution

In many papers, the above model is simplified using the condition Rp → ∞. In Ref. [1], the
approximated Eq. 3.7 if Rp tends toward infinity is given :

I = Iph − I0 ·
[

exp
(

V + Rs · I
ns · Vt · a

)
− 1
]
−

neglected term
V + Rs · I

Rp︸ ︷︷ ︸
=0

, (3.17)

The equivalent circuit is shown in Fig. 3.15.

FIGURE 3.15 – Equivalent circuit of the simplified model of photovoltaic cell [1].
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In this case, we obtain the simplification of Eq. 3.7 :

I = Iph − I0 ·
[

exp
(

V + Rs · I
ns · Vt · a

)
− 1
]

. (3.18)

The V − I characteristic is therefore :

V = ns · a · Vt ln
( Iph

I0
+ 1 − I

I0

)
− Rs · I (3.19)

The simplified equation is consistent with the constraints of the I − V and P − V characte-
ristics going through the remarkable points :

— 0 = Iph − I0

[
exp

(
Voc

ns·Vt·a

)
− 1
]

, from which, we deduce the necessary condition :

I0 =
Iph

exp
(

Voc
ns·Vt·a

)
− 1

. (3.20)

— Isc = Iph − Iph
exp

(
Rs ·Isc
ns ·Vt ·a

)
−1

exp
(

Voc
a·Vt

)
−1

. then :

Iph = Isc

exp
(

Voc
ns·Vt·a

)
− 1

exp
(

Voc
ns·Vt·a

)
− exp

(
Rs·Isc

ns·Vt·a

) . (3.21)

If Rs·Isc
ns·Vt·a → 0, then Iph = Isc : This equation is often used in the literature as a prior

condition, however, its origin still causes intense debate. To find this equality, we have
to consider the condition lim

Rs→0
while Rs is small but not negligible. Actually, lim

Rs→0
⇒

Iph = Isc.
— The remarkable point of I − V characteristic : (impp, vmpp).

impp = Iph − I0
[

exp
(

vmpp + Rs.impp
ns.Vt.a

)
− 1
]

, (3.22)

that we rewrite using previous results :

impp = Isc

exp
(

Voc
ns·Vt·a

)
− exp

(
vmpp+Rs.impp

ns.Vt·a

)
exp

(
Voc

ns·Vt·a

)
− exp

(
Rs·Isc

ns·Vt·a

) (3.23)
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Remark 3.2. The maximum power pmax can be expressed by using the I − V characte-
ristic :

pmax = vmpp · Iph − vmpp.
Iph

exp
(

Voc
ns·Vt·a

)
− 1

[
exp

(
vmpp + Rs.impp

ns · Vt · a

)
− 1
]

(3.24)

We can conclude that pmax ̸= vmpp · impp. Note that the values of impp, vmpp and pmax are
indicated in the manufacturer data-sheet.

— Finally, the maximum of power is reached if its derivative vanishes. Therefore :

0 = Iph + I0 − I0 exp
(

vmax + Rs · immpp

ns · Vt · a

)(
1 +

vmpp

ns · a · Vt

)
(3.25)

This approximation gives an explicit equation of the perfect photovoltaic panel, by removing
the resistances from the model. The voltage can be calculated for Rp → ∞ :

V = ns · a · Vt ln
[

exp
(

Voc

ns · a · Vt

)
+

I
Isc

(
1 − exp

(
Voc

ns · Vt · a

))]
(3.26)

= Voc + ns · a · Vt ln
[

1 − I
Isc

+
I

Isc
exp

(
− Voc

ns · Vt · a

)]
(3.27)

The influence of Rp and Rs was studied [75]. Actually, the typical value of Rp and Rs are
given in Ref. [75] as well as an iterative method to determine their values from the parameters.
The minimum of Rp was evaluated from the slope of the line segment between the short-circuit
and the maximum-power points of the cell electrical characteristic :

min(Rp) =
vmpp

Isc − impp
−

Voc − vmpp

impp
. (3.28)

This minimum could help to check the validity of the assumption Rp → ∞.
This last equation gives :

Rs = −
vmpp

impp
+

ns · a · Vt

impp
ln

(
(Iph + I0) · ns · a · Vt

I0(vmpp + ns · a · Vt)

)
(3.29)

3.6.4 | Approximated equation : if Rp → ∞
The present approach consists in considering the limit of the I − V characteristic from the

beginning of calculations. We will get different results from those.
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Moreover, Rs appearing in linear form in Eq. 3.29 as well as argument of exponential, another
assumption is required to calculate analytically these quantities :

Isc.Rs

ns · a · Vt
<< 1 ⇒ exp

(
Isc · Rs

ns · a · Vt

)
≈ 1. (3.30)

This condition may be simply expressed as Rs → 0 . Under this condition, Eqs. 3.31-3.32 do
not involve exponential of Rs anymore. The following equations are no more coupled by Rs :

Iph ≈
Isc

[
exp

(
Voc

ns·aVt

)
− 1
]

exp
(

Voc
ns·a.Vt

)
− 1

= Isc (3.31)

I0 ≈ Isc

exp
(

Voc
nsa.Vt

)
− 1

(3.32)

Rs = −
vmpp

impp
+

ns · a · Vt

impp
ln

(
(Iph + I0) · ns · a · Vt

I0(vmpp + ns · a · Vt)

)
(3.33)

The additional assumption [1] :

exp
(
−
(

Voc

ns · a · Vt

))
<< 1 (3.34)

is used to simplify the second equation : and therefore the I − V characteristic.

I0 ≈ Isc. exp
(
−
(

Voc
ns.a.Vt

))
(3.35)

(3.36)

This set of equations can be used to calculate the I −V characteristic, provided the assumptions
validity check.

I = Isc − Isc
[

exp
(

V − V0 + RsI
ns.Vt.a

)
− 1
]

. (3.37)

with :

Rs = −vmpp
impp

+
ns.a.Vt
impp

ln

( (
1 + exp

(
−
( Voc

ns.a.Vt
)))

.ns.a.Vt
exp

(
−
( Voc

ns.a.Vt
))
(vmpp + ns.a.Vt)

)

≈ Voc − vmpp
impp

+
ns.a.Vt
impp

ln
(

ns.a.Vt
vmpp + ns.a.Vt

)
(3.38)
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The V − I characteristic is therefore :

V = ns.a.Vt ln

(
Isc − I

Isc exp
(
−
( Voc

ns.a.Vt
)) + 1

)
− Rs.I (3.39)

= Voc + ns.a.Vt ln
(

1 − I
Isc

+ exp
(
−
(

Voc
ns.a.Vt

)))
− Rs.I (3.40)

≈ Voc + ns.a.Vt ln
(

1 − I
Isc

)
− Rs.I (3.41)

Let us detail the relationship between the manufacturer data and the quantities in Eq. 3.7.
In the case of the RCM-380-MA panel (Tab. 3.3), the module is mono-cristalline and therefore
a = 1.2.
Vt.a can be calculated independently of the manufacturer data.
I0 is the reverse saturation current of the diode (leakage current) :

I0 =
Isc

exp
( Voc

ns.a.Vt
)
− 1

(
Tc

Tnoc

)3

exp

[
q · Eg
kB · a

(
1

Tnoc
−

1
Tc

)]
, (3.42)

with Isc the short-circuit current and Eg is the gap energy of the semiconductor (about 1.12eV),
q = 1.60217646e − 19C is the electron charge, kB = 1.3806503e − 23J K−1 is the Boltzmann
constant, Vt is the thermal voltage, a is the diode ideality constant. The gap energy of the
semiconductor Eg can be expressed as a function of the maximum operating temperature (see
Eq. (7) in Ref. [75]). However, another way to define I0 as a function of the manufacturer data-
sheet has been proposed.

3.6.5 | Overview of the model in Ref. [1]
In Ref. [3], the implicit equation 3.7 has been solved by using specific methods such as maxi-

mum power point tracking (MPPT) technique. These methods are time consuming, therefore
we will turn us to a more simple model (simplified model of photovoltaic panel) close to that
proposed in Ref. [1].

I = Iph − I0

[
exp

(
V + Rs · I

ns.Vt.a

)
− 1
]
− V + Rs · I

Rp
,

Iph is the photovoltaic current produced by solar irradiance G (W m−2). Isc is the nominal
short-circuit current, given in the manufacturer datasheet [75, 1] :

Iph = Isc. (3.43)
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The dependence of the photo-current to the solar irradiation will be introduced later. To over-
pass the introduction of additional quantity Eg and to connect the (I − V) characteristic to the
manufacturer data, a remarkable point (Voc, 0) is replaced in Eq. 3.7. The first assumption is
Rp → ∞ . The consequences are :

— Iph = Isc

with :

0 = Isc − I0
[

exp
(

Voc
ns.Vt.a

)
− 1
]
− Voc

Rp
. (3.44)

The additional term Voc/Rp is neglected to get explicit equation and to solve it in explicit form [75] :

I0 =
Isc − Voc

Rp

exp
( Voc

ns.Vt.a
)
− 1

≈ Isc

exp
(

Voc
ns·Vt·a

)
− 1

. (3.45)

The I − V characteristic is therefore :

I = Isc −
Isc

exp
(

Voc
ns·Vt·a

)
− 1

[
exp

(
V + Rs · I
ns · Vt · a

)
− 1
]

.

Additional assumption is made in Ref. [1] :

exp
(
− Voc

ns · Vt · a

)
<< 1 .

Therefore :

I = Isc

[
1 − exp

(
V − Voc + Rs · I

ns · Vt · a

)]
.

3.6.6 | The temperature dependence

The temperature dependence of I0 is given with slight modification of Eq. (6) in [75] for
kIsc). Voc is replaced by Voc(1 + k · Voc · (tc − tnoc)) and Isc by Isc(1 + k · Isc · (tc − tnoc)) ·
G/Gnoc, where Gnoc, kIsc and tnoc are given by the manufacturer, and ta is the ambient
temperature.

I0 ≈ Isc(1 + k · Isc(tc − tnoc))

exp
(

Voc(1+k·Voc(tc−tnoc))
ns·Vt a

)
− 1

= αIsc. (3.46)
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Therefore, the characteristic I − V with Rp → ∞ becomes :

I ≈ Isc(1 + kIsc(tc − tnoc))
G

Gnoc
−

Isc(1 + kIsc(tc − tnoc)) G
Gnoc

exp
(

Voc(1+kVoc(tc−tnoc))
ns.a.Vt

)
− 1

exp

V + Rs.I

ns kBT
q .a

− 1

 (3.47)

where the quantities written in boldface are known (manufacturer data, Tabs. 3.3 for example).
The input parameters of this equation are the cell temperature tc, the solar irradiation G, and
the variables are the current I and the voltage V. Knowing G and tc, a single couple (V, I)
should be found.

Remark 3.3. This equation differs from Eq. (6) in Ref. [75], as the units of kI and kV in manufac-
turer data are °C−1.

Rs and Rp are series and parallel electrical resistances (Ω). Two problems clearly appear
in this equation. The first one is the implicit characteristic of the PV cell : the electric current
appears in the exponential function as well as in linear terms of this equation. The second one
is the lack of indication on Rs (and Rp values in manufacturer data). However, the remarkable
points of the I − V characteristic are used to calculate these quantities.

— We have already used the point (Voc, 0) to deduce Is under the additional assumption

Voc
Rp

<< Isc − I0
[

exp
(

Voc
ns.Vt.a

)
− 1
]

.

This assumption is consistent with the large value of Rp.
— The I − V characteristic pass through the short-current circuit point (Isc, 0). Therefore,

we deduce :

Isc = ff.Isc − fi.Isc

exp

 Rs.Isc

ns kBT
q .a

− 1

− Rs.Isc
Rp

(3.48)

with
α = (1 + kIsc(tc − tnoc))

G
Gnoc

and :
β =

(1 + kIsc(tc − tnoc))

exp
(

Voc(1+kVoc(tc−tnoc))
ns.a.Vt

)
− 1

.

This equation is implicit in Rs and cannot be analytically solved.
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— The power characteristic reach a maximum value through at (Impp, Vmpp). Therefore,
we deduce an explicit equation in Rp but implicit in Rs :

dVI
dV

(Impp, Vmpp) = −βIsc(vmpp + ns.a.Vt)γ
Rp.ns.a.Vt

+

(α + β)Isc − 2vmpp + Rs.impp
Rp

= 0, (3.49)

with γ = exp
(

vmpp+Rs.impp
ns.a.Vt

)
. If we suppose that pmax = impp.vmpp [3], we get another

implicit equation, involving γ :

pmax = vmpp
(
−Isc.β.γ + Isc.α − vmpp + Rs.impp

Rp

)
(3.50)

These two equations can be solved to find Rs and Rp with an iterative method as
proposed in Ref. [3]. A relationship between Rp and Rs is :

Rp = −
a · Vt · v2

mpp

Isc.v2
mppβγ − ns.a.Vt(β.Isc.vmpp + pmax)

(3.51)

=
ns · a · Vt · vmpp

−Isc.vmpp · β · γ + ns · a · Vt · (β.Isc + impp)
(3.52)

=
ns · a · Vt · vmpp

ns · a · Vt · impp + Isc.β(ns · a · Vt − vmpp · γ)
(3.53)

where Rs is hidden in γ, and pmax = impp.vmpp was used in Eq. 3.53. We will give a
simpler in the following subsection.

However, the goal of this study is to provide quick algorithms to evaluate the power pro-
duced by photovoltaic arrays. Consequently, we use some additional approximations to get
analytical results and explicit equations.

3.6.7 | Rigorous simplified model
The assumptions of the simplified model used in Ref. [1] were : Iph = Isc, exp

(
− Voc

ns.Vt.a
)
<<

1 and Rp → ∞. The equivalent circuit is shown in Fig. 3.15, page 61.
In this section, we will show that the underlying hypothesis Rs → 0 is actually used to get

the simplified model. Indeed, the model in Ref. [1] is a fitting of the ideal diode characteristic,
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and Rs is reintroduced after. Therefore, ns.a.Vt will also be evaluated from the remarkable
points of the characteristic.

The influence of these resistances was studied [75]. Actually, the typical value of Rp and
Rs are given in Ref. [75] as well as an iterative method to determine their values from the
parameters.

3.6.7.1 | Analysis of the simplified I-V characteristic

If Rp value is large enough, the characteristic equation assuming Iph = Isc becomes :

I = Isc − I0

[
exp

(
V + Rs · I
ns · Vt · a

)
− 1
]
−

neglected term
V + Rs · I

Rp︸ ︷︷ ︸
=0

,

I0 is calculated in the same manner as in the full model, by using the (0, Voc) remarkable point
of the characteristic, without including the temperature dependence :

I0 =
Isc

exp
( Voc

ns.Vt.a
)
− 1

. (3.54)

Therefore :
I = Isc −

Isc

exp
(

Voc
ns·Vt·a

)
− 1

[
exp

(
V + Rs · I
ns · Vt · a

)
− 1
]

. (3.55)

The voltage is deduced to get simple calculations of the I − V characteristic :

V = ns · Vt · a ln
[

exp
(

Voc

ns · Vt · a

)(
1 − I

Isc

)
+

I
Isc

]
− Rs · I (3.56)

= ns · Vt · a ln
[

exp
(

Voc

ns · Vt · a

)(
1 − I

Isc
+

I
Isc

exp
(
− Voc

ns · Vt · a

))]
− Rs · I

= Voc + ns · Vt · a ln
[

1 − I
Isc

+
I

Isc
exp

(
− Voc

ns · Vt · a

)]
− Rs · I (3.57)

The I − V characteristic in Eq. 3.57 pass over the remarkable points (Voc, 0). On the contrary,
(0, Isc) does not belong to the curve as equation

0 = Voc + ns · Vt · a
(
− Voc

ns · Vt · a

)
− Rs · Isc,

is verified only if the series resistance Rs vanishes. Therefore, the simplified model does not
handle this remarkable point. The error on voltage for I = Isc is −Rs · Isc. We must verify that
this quantity is small enough to reduce the error value.
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3.6.7.2 | The electric power

The electric power is :

P = V · I = V

Isc −
Isc

exp
(

Voc
ns·Vt·a

)
− 1

[
exp

(
V + Rs · I
ns · Vt · a

)
− 1
] (3.58)

≈ V · Isc ·
[

1 − exp
(

V − Voc + Rs · I
ns · Vt · a

)]
. (3.59)

The electric power is close to that given in Eq. (2) of Ref. [3], where the term −Vpv/Ns must be
removed and "the value of Rs and Rp can be neglected".

The output power is multiplied by the fill factor f f which evaluates the maximum power
produced by a solar panel :

f f =
pmax

Voc · Isc
. (3.60)

This unit less coefficient is a measure of the squareness of the I − V characteristic.
The electric power is of interest as it opens the way of using additional quantities from the

manufacturer sheet : pmax, vmpp and impp.

3.6.7.3 | Calculation of the series resistance Rs

The power is maximum at the (impp, vmpp) point : dP
dV (impp, vmpp) = 0, therefore, we obtain

a first value for the series resistance Rs :

Rs1 =
Voc − vmpp

impp
+

ns · Vt · a
impp

ln
[

ns · Vt · a
ns · Vt · a + vmpp

]
(3.61)

The I − V characteristic :
If we state that maximum of power max(P) = pmax as we want to use this manufacturer data,
we get a second form for Rs :

Rs2 =
Voc − vmpp

impp
+

ns · Vt · a
impp

ln
[

1 − pmax

vmpp · Isc
+

p
vmpp · Isc

exp
(
− Voc

ns · Vt · a

)]
(3.62)

Both expressions of Rs may be compatible only if the arguments of the logarithm functions are
equal :

1 +
pmax

isc · vmpp

(
exp

(
− Voc

ns · Vt · a

)
− 1
)
=

ns · Vt · a
ns · Vt · a + vmpp

(3.63)
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Moreover, if we assess that the I − V curve pass through (impp, vmpp), we get :

Rs3 =
Voc − vmpp

impp
+

ns · Vt · a
impp

ln
[

1 −
impp

Isc
+

impp

Isc
exp

(
− Voc

ns · Vt · a

)]
(3.64)

Rs3 is consistent with Rs1 only if pmax = impp.vmpp. Therefore, the assumption in Ref. [75] is
rather a condition of consistence of the remarkable points.

This first simplified model does able to check if the electric power reaches a maximum value
for (vmpp, impp) and if the I − V characteristic pass through this point. Moreover, implicit
equations prevent us to get simple expressions of resistances. Therefore, a supplementary
assumption is put to the front in the following.

Remark 3.4. If we replace Iph and I0 by their approximated expression (for Rp → ∞ and
Rs → 0) in the non approximated I − V equation :

I = Iph − I0
[

exp
(

V + RsI
ns.Vt.a

)
− 1
]
− V + RsI

Rp
,

and if we solve this equation at (Voc, 0) point : Rp = Voc
Iph+I0(1−exp( Voc

ns.a.Vt))
, we obtain infinite

Rp. This result is consistent with the fact that we consider the assumptions on the resistances
from the beginning of the thought process. On the contrary, using the (Is, 0) point gives :

Rp = Rs
1 − exp

( Voc
ns.a.Vt

)
exp

( Isc.Rs
ns.a.Vt

)
− 1

. (3.65)

3.6.7.4 | Further simplification

It’s clear that the assumption exp
(
− Voc

ns·Vt·a

)
<< 1 leads to simplifications of equations,

toward the ideal diode model (Rp → ∞ and Rs → 0) :

exp
(
− Voc

ns · Vt · a

)
<< 1 ⇒ 1

exp
(

Voc
ns·Vt·a

)
− 1

≈ exp
(
− Voc

ns · Vt · a

)
.

This simplification is legitimate, ns · Vt · a being much smaller than Voc.
The inequality 3.34 helps to simplify Eqs. 3.55, page 69 and 3.57, page 69 :

I ≈ Isc −
Isc

exp
(

Voc
ns·Vt·a

)
− 1

[
exp

(
V + Rs · I
ns · Vt · a

)
− 1
]

.

71



Chapitre 3. Materials & Methods 3.6. Mathematical modeling the photovoltaic panel

becomes :

I ≈ Isc − Isc. exp
(
− Voc

ns · Vt · a

) [
exp

(
V + Rs I
ns · Vt · a

)
− 1
]

(3.66)

≈ Isc − Isc.
[

exp
(

V − Voc + Rs · I
ns · Vt · a

)
− exp

(
− Voc

ns · Vt · a

)]
(3.67)

≈ Isc

[
1 − exp

(
V − Voc + Rs I

ns · Vt · a

)]
(3.68)

By the same token [1] :

V ≈ Voc + ns · Vt · a ln
[

1 − I
Isc

+
I

Isc
exp

(
− Voc

ns · Vt · a

)]
− Rs.I (3.69)

≈ Voc + ns · Vt · a ln
(

1 − I
Isc

)
− Rs · I (3.70)

Again, using remarkable points of the characteristic gives :
— at (Voc, 0) : Voc ≈ Voc + ns · Vt · a ln

(
1 − 0

Isc

)
− Rs.0 = Voc.

— at (0, Isc) : 0 ≈ Voc + ns · Vt · a ln
(

1 − Isc
Isc

)
− Rs · Isc. This equation cannot be verified, the

present approximation leads to infinite value for the logarithm function (before this ap-
proximation the error was Rs · Is). The I −V characteristic gives : Isc = Isc

[
1 − exp

(
−Voc

ns·Vt·a

)]
≈

Isc, therefore, we have to beware of the V − I characteristic, whereas the I − V is more
efficient.

— at (vmpp, impp) :
+ dP/dV(impp, vmpp) = 0, therefore :

Rs = Rs′1 =
Voc − vmpp

impp
+

ns · Vt · a
impp

ln
[

ns · Vt · a
ns · Vt · a + vmpp

]
(3.71)

which is identical to Rs1 (Eq. 3.61, page 70).
+ pmax =≈ impp

(
Voc + ns · Vt · a ln

(
1 − impp

Isc

)
− Rs.impp

)
, therefore :

Rs = Rs′2 =
Voc − vmpp

impp
+

ns · Vt · a
impp

ln
[

1 −
impp

Isc

]
. (3.72)

which is Rs2 (Eq. 3.62, page 70) :

Rs2 =
Voc − vmpp

impp
+

ns · Vt · a
impp

ln
[

1 +
impp

Isc

(
exp

(
− Voc

ns · Vt · a

)
− 1
)]

.

by applying the assumption exp
(
− Voc

Vt.a

)
<< 1 (Eq. 3.34, page 64).
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Again, we expect the equality for the power passing through (impp, vmpp) and reaching
a maximum value at this point :

1 −
impp

Isc
=

ns · Vt · a
ns · Vt · a + vmpp

This equality is verified if we set :

ns · a · Vt = vmpp

(
Isc

impp
− 1
)

(3.73)

Consequently, to prevent the different values of Rs, we give up the physical definition of the ther-
mal voltage Vt to the benefit of a parameter, which affords to a best fitting by using manufacturer
data.

Let us note that the derivative of electric power was with respect to I in Ref. [1] while the
maximum is reached in the I − V characteristic (function of V). Let us summarize the method
used to model the photovoltaic panel.

Theorem 3.1. To my knowledge, this calculation is new, and brings some rigor to the approximate
reasoning of the references [3, 1, 75].

— Iph = Isc and I0 = 1
exp

(
Voc

ns ·Vt ·a

) are obtained for Rp → ∞ and Rs → 0.

— The final I − V and V − I characteristics also require exp
(
− Voc

ns·Vt·a

)
<< 1 :

I ≈ Isc

[
1 − exp

(
V − Voc + Rs I

ns · Vt · a

)]

V ≈ Voc + ns · Vt · a ln
(

1 − I
Isc

)
− Rs · I

— ns ·Vt · a is replaced by VT = vmpp

(
Isc

impp
− 1
)

and pmax = impp · vmpp to handle that the I −V
curve pass through (impp, vmpp), that pmax is the maximum power P, and that dP/dI(impp, vmpp) =

0.
— Using the (Is, 0) point gives :

Rp ≈ Rs

exp
(

Voc
ns·a·Vt

)
1 − exp

(
Isc·Rs

ns.a.Vt

) .
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Remark 3.5. Again, if we replace Iph and I0 by their approximated expression (for Rp → ∞ and
Rs → 0) in the non approximated I − V equation :

I = Iph − I0

[
exp

(
V + Rs · I
ns · Vt · a

)
− 1
]
− V + Rs · I

Rp
,

and if we solve this equation at (Voc, 0) point : Rp = Voc

Iph+I0
(

1−exp
(

Voc
ns ·a·Vt

)) , we obtain infinite Rp.

This result is consistent with the fact that we consider the assumptions on the resistances from
the beginning of the thought process.

3.6.8 | Summary of the assumptions and results : Algorithm

The restrictive assumptions, used to get a simplified analytical model of the photovoltaic
panel are following :

— Iph = Isc the photon-current is the inverse saturation current for any value of the solar
irradiance. Indeed, we cannot verify its validity. It is broadly used as a first statement.
The underlying assumption is Rs ≈ 0.

— Rp → ∞ or Voc
Rp

<< Isc − I0 exp
(
− Voc

ns·Vt·a

)
to get I0 (Eq. 3.46, page 66).

— exp
(
− Voc

ns·Vt·a

)
<< 1,

— ns · Vt = ns · kB · T · a/q is replaced by VT = vmpp

(
Isc

impp
− 1
)

, to heed the maximum
power data from manufacturer.

Numerical tests of validity.
— We evaluate exp

(
−Voc

VT

)
from manufacturer data sheet (Tab. 3.3, page 57 : in standard

conditions Vmpp = 40.1V, Impp = 9.48A, Voc = 48.5V, Isc = 9.93A : VT = 1.90V,
therefore, exp

(
−Voc

VT
)
= 8.6e − 12 is much less than 1.

— We could compare VT to ns.kB.T/q to evaluate the closeness of the fitting parameter to
the physical value : VT = 1.90V and ns · kB.Tstd/q = 0.2. The release of this parameter
appears to be critical to adjust the I − V characteristic to the maximum power data. The
discrepancy is due to the hard assumptions used to calculate Iph, I0 and Rs : Rp → ∞
and Rs ≈ 0.

— The assumption of large Rp can be checked from Eq. 3.53, page 68.
Under these assumptions, the useful equations are following.
— The temperature of the cell : Tc = Ta + (tnmot − tnoc)

G
Gnoc , Eq. 3.9, page 59.
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— Temperature dependence of Voc : Voc is replaced by : Voc · (1 + kVoc(tc − tnoc)).
— Temperature dependance of Pmax : Pmax is replaced by : Pmax · (1 + kPmax(tc − tnoc)).
— Temperature and solar irradiance dependence of Isc : Isc is replaced by : Isc · (1+ kIsc(tc −

tnoc)).G/Gstd.
— The replacement of the thermal voltage (Eq. 3.73, page 73) :

VT = vmpp

(
Isc

impp
− 1
)

.

— The series resistance Rs :

Rs =
Voc − pmax/impp

impp
+

VT
impp

ln
(

1 −
impp

Isc

)
— The voltage of the solar panel (Eq. 3.70, page 72) :

V ≈ Voc + VT ln
(

1 − I
Isc

)
− Rs · I

— The solar panel current :

I ≈ Isc
[

1 − exp
(

V − Voc + RsI
VT

)]
— The output electrical power of the solar panel :

P = V.I ≈ I.
(

Voc + VT ln
(

1 − I
Isc

)
− Rs.I

)
— The parallel resistance to check the validity of assumptions (Eq. 3.65, page 71) :

Rp = Rs
exp

( Voc
ns.a.Vt

)
− 1

1 − exp
( Isc.Rs

ns.a.Vt
) .

The slope of the line segment between the short-circuit and maximum power remar-
kable points gives the minimum of Rp (Eq. (11) in Ref. [75]) :

min(Rp) =
vmpp

Isc − Imp
− Voc − vmpp

impp
The characteristic of a photovoltaic grid : an association of Ns × Np panels is :

I = Np.Iph − Np.I0

[
exp

(
V + Rs Ns

Np I

Ns.Vt.a

)
− 1

]
−

V + Rs Ns
Np I

Rp Ns
Np

(3.74)

Under the strong assumptions Rp → ∞ and Rs → 0, the values of power overestimate the grid
production :

max(P) = V.Np
(

Iph − I0. exp
(

V
Ns.a.Vt

))
. (3.75)
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3.6.9 | Comparison of models
The model proposed in Ref [1] is based on the same assumptions as ours, but works on the

V − I characteristic instead of the I −V. Therefore, the derivative of P in relation to the voltage
instead of the electric current. The maximum of electric power is therefore :

pmax = impp
(

Voc + Vt ln
(

1 − impp
Isc

)
− Rsimpp

)
(3.76)

dVI
dI

∣∣∣∣
I=impp

= vmpp +
Vtimpp

impp − Isc
− Rs.impp = 0. (3.77)

The solutions of this system of linear equations are :

Vt|I=impp =
(2Vmp − Voc)(Isc − Imp)

Imp + (Isc − Imp) ln
(

1 − Imp
Isc

) (3.78)

Rs|I=impp =
Vmp
Imp

− 2Vmp − Voc

Imp + (Isc − Imp) ln
(

1 − Imp
Isc

) . (3.79)

Table 3.5 summarize the common equations and the differences between our model and
that in Ref. [1].

Model A Model B
Our calculation Ref [1]

(I, V) I ≈ Isc
[
1 − exp

(V−Voc+RsI
VT

)]
(V, U) V ≈ Voc + VT ln

(
1 − I

Isc
)
− Rs.I

Iph Isc
Isc Isc(1 + kIsc(tc − tnoc)).G/Gstd
I0 Isc(1 + kIsc(tc − tnoc)).G/Gstd

Voc Voc(1 + kVoc(tc − tnoc)). Tc
Tstd Voc(1 + kVoc(tc − tnoc)). Tc

Tstd
+VT. log(G/Gstd)

Rs Rs = Voc−pmax/impp
impp + VT

impp ln
(

1 − impp
Isc

)
Rs = Vmp

Imp − 2Vmp−Voc

Imp+(Isc−Imp) ln
(

1− Imp
Isc

)
Rp Rp = Rs

exp ( Voc
ns.a.Vt)−1

1−exp ( Isc.Rs
ns.a.Vt)

-

VT VT = vmpp
(

Isc
impp − 1

)
VT = (2vmpp−Voc)(Isc−impp)

impp+(Isc−impp) ln
(

1− impp
Isc

)
max(P) dP

dV = 0 dP
dI = 0

TABLE 3.5 – Comparison between of our model and that in Ref. [1].
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FIGURE 3.16 – I-V characteristic of RECOM FIGURE 3.17 – P-V characteristic of RECOM

Figure 3.16 referring to I − V Characteristic function of the RECOM photovoltaic panel
(Tab. 3.3, page 57) and figure 3.17 referring to electrical power provided by RECOM solar panel,
illustrate the Comparison between the results of our model and that in Ref. [1]. pmax. f f and
impp.vmpp. f f are drawn with "x" and "+".

The characteristics are close to those in manufacturer data-sheets. There is a slight discrepancy
between both models. Our model give curves that pass through (impp, vmpp). However the
model in Ref. [1] does not preserve this property of I − V curves, the calculation using dP/dI
instead of dP/dV.

3.7 | Analytical formulation using Lambert func-
tion

The extraction of electric parameters of photovoltaic panels has been an intensive research
topic for many years, are quite complex equations to use common analytical methods. The
basic principle of the method is based on the use of the Lambert function W0.
The Lambert function (or omega function) relates :

y exp(y) = x ⇔ y = W0(x). (3.80)
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The tricks consists in identifying y and x in the phenomenon equation :

I = Iph − I0
(

exp
(

V + Rs.I
Vt

)
− 1
)
− V + Rs.I

Rp
.

In Ref. [76], Eq.(4) give the explicit solution for the current :

I =
ns.Vt.a

Rs
W0

(
I0.Rs.Rp

ns.Vt.a(Rp + Rs)
exp

(
Rp.(V + I0.Rs)

ns.a.Vt(Rp + Rs)

))
+

V − I0.Rs
Rp + Rs

(3.81)

3.8 | PSO to relate of model and manufacturer
parameters

The unknowns of the following model

I = Iph − I0
(

exp
(

V + Rs.I
αVt

)
− 1
)
− V + Rs.I

Rp
.

are Iph, I0, α, Rs and Rp in Ref. [77]. The inputs are the manufacturer data.
The particle swarm optimization is used to determine these parameters. To do this, we execute
the following function which includes the remarkable points of the I-V characteristic. We define
a fitness function which differs from that in [77].
We choose the interval of search as being the approximated solution from subroutine SolarPa-
nel.m : VT = 1.9386V,, voc = 44.8520V, Isc = 9.1295e − 10A, Rs = 0.6281Ω, isc = 10.1904A.
The domain of search is delimited by 1e − 4 and 1e4 times these values. c1 = c2 = 1.5, Ω
decreases linearly from 0.9 to 0.4 along the maximum of 3000 iterations. The end of descent
uses the multidimensional unconstrained nonlinear minimization (Nelder-Mead) with the best
result of PSO as starting point. 1000 realizations of the same algorithm gives a value of fitness
function less than 1e-14.
The best result is : Iph = 7.73, Is = 1.05e − 25, Rs = 0.9831, ns.a = 29.41 and Rp > 1e + 9
(execution of ten times the 1000 realizations shows that this parameters is the less accurately
determined). Therefore, the previously used assumptions of simplification of the model are
valid : Rp is great enough to be considered as infinite, Rs is small, and Is >> Iph.

Figures 3.18 and 3.19 below illustrate the comparison of the model and manufacturer parame-
ter curves.
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FIGURE 3.18 – Comparison of I-V characteris-
tics

FIGURE 3.19 – Comparison of P-V characte-
ristics

As a conclusion, the electric power produced by the panel cannot be approximated by :

P(V, I) = V.isc
(

exp
(

V − voc + I.Rs
ns.a.Vt

)
− 1
)

, (3.82)

rather by :

P(V, I) = V.Iph + V.Is
(

1 − exp
(

V + I.Rs
ns.a.Vt

)
− 1
)

(3.83)

3.9 | Model of photovoltaic array (grid)
According to Ref. [75], the characteristic of Ns × Np association of panels (grid) is :

I = Np.Iph − Np.I0

[
exp

(
V + Rs Ns

Np I

Ns.Vt.a

)
− 1

]
−

V + Rs Ns
Np I

Rp Ns
Np

. (3.84)

The same reference gives the maximum power P produced by the photovoltaic grid, under
the strong assumptions Rp → ∞ and Rs → 0 (there is no Joule loss) :

P = V.Np
(

Iph − I0. exp
(

V
Ns.a.Vt

))
. (3.85)

However, this definition of I0 is used in Refs. [1, 75] even if the calculation of Rs and Rp are
proposed. This lack of rigor in the procedure may puzzle the reader. Therefore, a more realistic
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model should be established by keeping the role of Rs, from the beginning of the calculations.
The following subsection detail the corresponding calculations.

3.10 | Propagation of uncertainties

In this section we evaluate the influence of experimental uncertainties on the electrical
power produced. Manufacturers’ catalogs usually do not provide uncertainties about the pa-
rameters, so we assume two cases namely :

(i) Relative uncertainty ur = 1 %

(ii) Relative uncertainty ur = 10 %

For each of the assumed relative uncertainty values, we evaluated the propagation of uncer-
tainty over the parameters contained in the manufacturers’ data sheets, namely, temperature
voltage VT, open-circuit voltage voc, series resistance Rs, short circuit current isc, fill factor f f
and maximum power Pmax.

The results of modeling the propagation of uncertainty through the model of this thesis are
compared with results of the modeling of uncertainty from the model in Ref. [7].

We use the method described in Ref. [78]. This is a simple Monte Carlo method, used to
evaluate the variations of the outputs of a model, as a function of the variations of its inputs. If
we suppose a relative uncertainty ur on each of the parameters found in the manufacturer data-
sheet, we can calculate the uncertainty on the produced photovoltaic power P. We calculate
1000 sets of parameters by using uniform pseudo-random generation of values around the
manufacturer parameters, within an interval which size is governed by ur.

3.10.1 | For relative uncertainty ur = 1%
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3.10.1.1 | Temperature voltage VT

FIGURE 3.20 – Our model : temperature vol-
tage VT.

FIGURE 3.21 – Model in Ref. [7] : temperature
voltage VT.

The thermal voltage as the voltage produced within the P-N junction due to the action of
temperature, in our model, the uncertainty seems to propagate uniformly throughout the 24
hours of the day, which is unlikely considering that the thermal voltage is caused by tempe-
rature and the temperature increases considerably during the daytime hours. See temperature
variation in figure 3.4 page 44.
The hourly distribution of uncertainty propagation by the model in Ref. [7] is shown to be
slightly different during the daytime hours, showing that the temperature rise during the
daytime influences the temperature of the P-N junction, which we assume to be expected (or
likely) considering the definition and concept of thermal voltage.
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3.10.1.2 | Open-Circuit Voltage Voc

FIGURE 3.22 – Our model : open-Circuit Vol-
tage Voc.

FIGURE 3.23 – Model in Ref. [7] : open-Circuit
Voltage Voc.

Open circuit voltage in a photocell occurs when no current flows through the cell, in this
case it happens at night the solar radiation is unavailable, therefore there is no current flowing
in the photocell. The propagated uncertainty is expected to have different distributions bet-
ween the daytime and nighttime period as in the model of Ref. [7]. In our model, the hourly
propagated uncertainty distribution appears to have a constant influence.
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3.10.1.3 | Series Resistance Rs

FIGURE 3.24 – Our model : series Resistance
Rs.

FIGURE 3.25 – Model in Ref. [7] : series Resis-
tance Rs.

One of the main causes of resistance in a photovoltaic cell is the movement of current bet-
ween the emitter and the base of the solar cell which is only possible during daytime hours, for
that reason, It is expected that the propagation of uncertainty has a totally opposite distribution
in the night period (without photocurrent) and in the day period (with photocurrent) as shown
in figures 3.24 and 3.25.
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3.10.1.4 | Short-Circuit Current Isc

FIGURE 3.26 – Our model : short-Circuit Cur-
rent Isc.

FIGURE 3.27 – Model in Ref. [7] : short-
Circuit Current Isc.

Short-circuit current expresses an excessive amount of current flowing through the circuit,
is the opposite of open-circuit where resistance tends to infinity. The hourly propagation of
uncertainty varies according to the hourly variation of solar radiation illustrated in figure 3.3
on page 43. Observing the hourly distribution of the propagation of uncertainty in figures
3.26 and 3.27, we can say that the greater the solar radiation, the greater the probability of
generating the photovoltaic current and, therefore, the greater the uncertainty and vice versa.
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3.10.1.5 | Fill factor f f

FIGURE 3.28 – Our model : fill factor FIGURE 3.29 – Model in Ref. [7] : fill factor

The fill factor is essentially the measure of efficiency of the photovoltaic module, expressed
by the ratio between the maximum power obtained, and the product of the short circuit current
and the open circuit voltage. The fill factor, by definition and concept, should follow the same
pattern of variation in relation to the power produced and therefore the existing uncertainty
should vary in the same trend.
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3.10.1.6 | Maximum Power Pmax

FIGURE 3.30 – Our model : maximum Power
Pmax

FIGURE 3.31 – Model in Ref. [7] : maximum
Power Pmax

The maximum power of a photovoltaic solar panel varies according to the intensity of the
available solar radiation whose uncertainty propagates through the system and influences the
power produced, thus, the uncertainty about the maximum power varies in the same trend as
the maximum power.

The figures illustrated and discussed above refer to the propagation of uncertainty based on
a reference uncertainty ur = 1%. The model of propagation of uncertainty is presented below
considering reference uncertainty ur = 10%.

3.10.2 | For relative uncertainty ur = 10%
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3.10.2.1 | Temperature Voltage VT

FIGURE 3.32 – Our model : temperature Vol-
tage VT.

FIGURE 3.33 – Model in Ref. [7] : temperature
Voltage VT.

Comparing figures 3.20 and 3.21 and figures 3.32 and 3.33, it is observed that the increase
in the uncertainty of reference, from ur = 1% to ur = 10%, changes the response of the thermal
voltage mainly in the daytime hours in the presence of solar radiation. Since the thermal
voltage is caused by temperature, it is expected that there will be a change in the behavior of
the uncertainty due to the increase in ambient temperature in the daytime period (see ambient
temperature variation, figure 3.4 , page 44).
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3.10.2.2 | Open-Circuit Voltage Voc

FIGURE 3.34 – Our model : open-Circuit Vol-
tage Voc.

FIGURE 3.35 – Model in Ref. [7] : open-Circuit
Voltage Voc.

There is a significant change in the open circuit voltage response in the Ref. [7] model when
the reference uncertainty is increased, however, our model shows an apparent "immunity"
to the increase in the reference uncertainty. A more in-depth study is necessary to determine
the cause of the non-change in the propagation of the uncertainty of the open circuit voltage,
even increasing the reference uncertainty. The attempt to simplify the complex equations of
the operating parameters of photovoltaic solar panels is generally done using the assumption
method as presented in Ref. [7].
The difference in the behavior of the open-circuit voltage response can be explained by the
slight difference between equation 3.70 deduced in this thesis, and equation (6) presented in
Ref. [7].
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3.10.2.3 | Series Resistance Rs

FIGURE 3.36 – Our model : series Resistance
Rs.

FIGURE 3.37 – Model in Ref. [7] : series Resis-
tance Rs.

Increasing the reference uncertainty influences the uncertainty propagated through the
series resistance. Knowing that the series resistance arises by the flow of current, it is noted
that the uncertainty exists within the limits of the presence of solar radiation (daytime) when
the generation of photovoltaic power is possible.
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3.10.2.4 | Short-Circuit Current Isc

FIGURE 3.38 – Our model : short-Circuit Cur-
rent Isc.

FIGURE 3.39 – Model in Ref. [7] : short-
Circuit Current Isc.

The increase in the reference uncertainty slightly influences the short-circuit current within
the limits of the period in which there is solar radiation for power generation.

3.10.2.5 | Fill factor f f

FIGURE 3.40 – Our model : fill factor f f . FIGURE 3.41 – Model in Ref. [7] : fill factor f f .
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The notable impact of the increase in reference uncertainty on the fill factor is the emergence
of a substantial number of outliers in the hourly distribution of the propagation of uncertainty,
indicating that when considering the uncertainty about the fill factor, it is important to take
into account the possible influence of extreme uncertainty that can significantly influence the
fill factor.

3.10.2.6 | Maximum Power Pmax

FIGURE 3.42 – Our model : maximum Power
Pmax.

FIGURE 3.43 – Model in Ref. [7] : maximum
Power Pmax.

The hourly distribution of the propagation of uncertainty about the output power demons-
trates greater intensity of the uncertainty expressed by the increase of outliers. An increasing
number of outliers can mean that the greater the reference uncertainty about the parameters,
the greater the propagation of uncertainty, and the impact of such propagated uncertainty will
certainly influence the maximum power that the system can produce.

3.10.3 | General comment on section 3.10
In uncertainty modeling we assume two levels of reference uncertainty namely, ur = 1%

and ur = 10%. The increment of the reference distribution from ur = 1% to ur = 10%
considerably influences the hourly distribution of uncertainty propagation, moreover, when
the reference uncertainty is ur = 10%, there is a significant amount of outliers in the hourly
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distribution of the propagated uncertainty, indicating that uncertainty exist and can reach
extreme values influencing parameters, imposing high risk of leading to poor decision making.

3.11 | Improvements of the photovoltaic panel
model

The output power of the solar cell is send to a DCDC converter that shapes the electric
signal for its practical use. Therefore, the influence of this device should be investigated. It is
also clear that the electric power delivered by the photovoltaic panel depends on the angle of
incidence of light upon. The useful solar irradiance decreases by increasing incidence angle of
the light on the panel. Therefore, the position of the sun with regards to the fixed panel must
be evaluated. If this angle of incidence is calculated, the transmittance by the glass blade over
solar cells and the shadow effect by the edges of the gridlines of the solar cells can be evaluated.
Finally, the influence of the photovoltaic panel aging should be evaluated for realistic and
sustainable purposes.

3.12 | The DC-DC converter
The DC-DC converter operates as an adapter between the photovoltaic panel and the load.

In Refs. [2, 3], authors proposed calculation of the optimal duty ratio of the DC-DC handle the
fact that the electric resistance of the panel and of the load must be equal to get a power transfer
equal to pmax. The duty cycle (or duty ratio) for an ideal DC-DC converter is a function of the
inductance resistance RL (main component of the DC-DC converter) :

Vo
Vi

=
D

RL
R(1−D)

+ 1 − D
(3.86)

≈ D
1 − D

(3.87)

where Vi and Vo are the input and output voltage of the DC-DC converter, respectively, and
Ro the resistance of the load. If the small resistance of the inductor is neglected, we obtain :

D =
Vo

Vo + Vi
. (3.88)
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3.12.1 | Duty ratio deducted in Ref. [2]
In the ideal case (no joule loss in the DC-DC converter) : Vo.Io = Vi.Ii, therefore :

Ii
Io

≈ D
1 − D

Consequently, the ratio of resistances is (Eq. (7) in Ref. [2]) :

Ro
Ri

≈
(

D
1 − D

)2

. (3.89)

If Ri = Rs, the output resistance of the photovoltaic panel, we have, for given Ro :

Ro
Rs

≈
(

D
1 − D

)2

. (3.90)

We deduce the optimum D :

D ≈
√

Ro√
Ro +

√
Rs

. (3.91)

The duty ratio D for the DC-DC converter should be adjusted the optimum. The optimal
expression of D depends on the DC-DC converter type (Tab. 3.6 is that in Ref. [?] with our
notations for the model of photovoltaic panel).

DC-DC converter D for any Po D when Po = pmax Required
Buck-boost D =

√
Ro√

Ro+
√

Rs
D = Vo

Vo+vmpp None

Boost D = 1 −
√

Rs√
Ro

D = 1 − vmpp
Vo Ro > vmpp/impp

Buck D =
√

Ro√
Rs

D = 1 − Vo
vmpp vmpp/impp > Ro

TABLE 3.6 – Optimal duty ratio D for different DC-DC converters for load matching as a
function of the output power Po. Ro = Vo/Io, Vo are output (or load) resistance and voltage,
Rs is the input resistance (the series resistance of the photovoltaic panel), vmpp is the optimal
voltage [2]. Rop = vmpp/impp.

Switching at the optimal duty ratio guarantees that the power supplied to load is pmax.
The Vo voltage and the Ro resistance are either that of the battery in charge mode (Rc) of that
of the electric power grid (load). The buck-boost converter is the most efficient as it does not
require a condition for operating, and the output voltage can be either greater or less than the
source voltage.
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If we consider the optimum duty-cycle of the buck-boost DC-DC converter : D = Vc/(Vc +
vmpp), with Vc the voltage of the battery in charge mode, the output power is pmax. A simple
default choice is considering twice the electromotive force of the battery for Vc, as given by the
study of the battery.
Therefore, the optimal D is Dopt :

Dopt = 2Ec/(2Ec + vmpp) (3.92)

The optimum D being fixed, the transferred power efficiency through the DC-DC converter
can be deduced.

3.12.2 | Duty ratio deducted in Ref. [3]

For buck-boost DC-DC- converter, the conversion ratio voltage is : Vo
Vi = Io

Ii = D
1−D . Conse-

quently, the ratio of input to output power is :

Po
Pi

=

(
D

1 − D

)2

(3.93)

If we set D = Dopt, the power efficiency of the DC-DC converter from N parallel is :

ηDC−DC =

(
2nb.Ec/(2nb.Ec + Np.vmpp)

1 − 2nb.Ec/(2nb.Ec + Np.vmpp)

)2

= 4
nb2.Ec2

Np2.vmpp2 , (3.94)

Np being the number of parallel photovoltaic panels.
If we tune the DC-DC converter with Dopt = Ec/(Ec+ vmpp), we obtain ηDC−DC = (nb.Ec/(Np.vmpp))2.
The best power efficiency is therefore obtained for a number of parallel batteries nb :

1
2

Np
vmmp

Ec
< nb < Np

vmmp
Ec

. (3.95)

3.13 | Model of solar position in the sky
The algorithm is described in Ref. [79]. The latitude and longitude of each of town conside-

red in this study can be found at :

https://latitude.to/satellite-map/mz/mozambique/297652/mecula-district.
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The decay of local times with regards to the UTC time used in calculations is retrieved from :

https://24timezones.com/

. In this study, we neglect the decay between the Earth rotation and the terrestrial dynamical
time ∆UTC. This decay is derived from observation (US Naval Observatory) and is a fraction
of second, positive or negative. Therefore it may be neglected compared to the UTC.
In modeling the position of the sun in the sky in relation to the geographical points considered
in this study, we will take into account two parameters namely :

— θ, the topocentric zenith angle (◦), measured from the local vertical.
— Γ, the topocentric astronomers azimuth angle (◦), measured westward from south.

The NOAA web site gives the “azimuth angle measured clockwise to the point of horizon
directly below the sun from the north and the elevation measured vertically from that point
on the horizon up to the sun”. Therefore the comparison can be made by using the topocentric
azimuth angle Φ = Γ + 180 in Ref. [79]. The angles are limited in the range [0; 360]◦.
The position of the sun will be considered in two geographical positions of Mozambique
namely, in the province of Maputo and in the district of Mecula :

— Maputo is the capital and largest city in Mozambique, it is the main financial, corporate
and commercial center in the country. Each province is administratively divided into
relatively small territories called districts, as is the case with the district of Macula

— Mecula is a district located in Niassa province in northern Mozambique

The position of the sun measured in topocentric zenith angle θ (in ◦) and topocentric astro-
nomers azimuth angle Γ (in ◦) for Maputo province and Mecula village both in Mozambique
can be described by graphs 3.44 and 3.45 below :
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3.13.1 | Sun position in Maputo province

FIGURE 3.44 – Solar zenith angle θ in Ma-
puto.

FIGURE 3.45 – Solar azimuth angle Γ in Ma-
puto

Figures 3.44 and 3.45 illustrate the angles of sun illumination in Maputo province for each
day and at each hour of the day during years 2019-2020.

3.13.2 | Sun position in Mecula district

FIGURE 3.46 – Solar zenith angle θ in Mecula.
FIGURE 3.47 – Solar azimuth angle Γ in Me-
cula
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Figures 3.46 and 3.47 illustrate the angles of sun illumination in Maputo province for each
day and at each hour of the day during years 2019-2020.

3.13.3 | Comment on section figures 3.44,3.45, 3.46 and 3.47

According to [15] solar radiation on a global scale varies essentially as a function of the
atmosphere, the geometry and the movement of the planet relative to the sun. At the local
scale, the variation in solar radiation is mostly associated with the morphology of the terrain,
such as variations in elevation, slope, exposure to the sun and shading. Mozambique has a high
global radiation in the horizontal plane when compared to good places in Europe and Asia,
being very close to some of the best places in the world, such as South Africa and California.
Furthermore, Mozambique has a good solar resource, consistent throughout the territory and
stable throughout the year.

3.13.4 | Optimization of the fixed panel orientation

The incidence angle I on a photovoltaic panel is deduced from :

I = arccos (cos(θ). cos(ω) + sin(ω). sin(θ). cos(Γ − γ)), (3.96)

ω is the slope of the surface of photovoltaic panel surface measured from the horizontal
plane, and γ is the surface azimuth rotation angle measured from south to projection of the
surface normal on the horizontal plane, positive or negative if oriented east or west from south,
respectively [79].
To improve the model, we include the transmittance of the overlying blade and the effect of
shadowing of gridlines.

3.14 | The transmittance of the overlying blade
The transmittance of the overlying glass (or transparent medium) above the gridlines of

the cell depends on the angle of incidence of light. The transmittance of plane wave through
a glass blade of relative permittivity ϵ2 ≈ 2.25 can be calculated from Fresnel coefficients [78].
The normal to the surface component of the incident wave vector is denoted w1 in air and w2
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in glass : w1 = k0 cos(I), w2 = k0

√
ϵ2 − sin2(I), with k0 = 2π/λ0, λ0 being the wavelength of

the incoming linearly polarized plane wave, under incidence angle I. The transmittance by the
blade depends on the polarization of the light (s and p are the transverse electric and magnetic
polarization respectively) :

Ts =

∣∣∣∣ 2w1

w1 + w2

∣∣∣∣2 .
∣∣∣∣ 2w2

w2 + w1

∣∣∣∣2 (3.97)

Tp =

∣∣∣∣ 2ϵ2w1

ϵ2w1 + w2

∣∣∣∣2 .
∣∣∣∣ 2w2

w2 + ϵ2w1

∣∣∣∣2 . (3.98)

They are the product of transmittances by air-glass and glass-air single interfaces. Let us note
the dependence on λ0 only remains in the dispersion relation of ϵ2. The sun light is unpolarized
and therefore can be considered as an equal mix of these two perpendicular plane polarisation
states. We consider unpolarized light impinging on the photovoltaic cell, even if its interaction
with the atmosphere can lead to partially polarized light. The transmittance is calculated from
100,000 pseudo-random values rs and rp, following and uniform law of probability :

Tt =
rsTs + rp

rs + rp
(3.99)

The transmittance of unpolarized light by the glass blade is shown in Fig. 3.48.

FIGURE 3.48 – Transmittance and Monte Carlo.
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The spline fitting ηp(I) of the result is used to calculate the effective solar radiation as a
function of the incidence angle of sun light.

3.15 | The shadowing effect of the gridlines of
cells

The electric power produced by the photovoltaic panel depends on the solar illumination
and on the angle of incidence of the solar light on the panel. The angular dependence of the
solar cell efficiency is commonly considered following a cosine law of the light incidence angle
I. Authors of Ref. [80] gives an improved formula of the efficiency and distinguish the cases
of illumination parallel and perpendicular to the cell gridlines. The efficiency is not sensitive
to illumination incidence angle parallel to the gridlines. On the contrary, in the upright case of
incidence, they identify three contributions : the classical cosine function loss, a sine function
loss due to the reflected light from the gridlines, and a tangent function loss due to the shading
effect. They fitted experimental data and obtained :

η⊥ = 1.81% sin(I) + 27.07% cos(I)− 1.86% tan(I), (3.100)

where 27.07% is the maximum efficiency of th investigated panel and I the incidence angle. We
rewrite this equation as a function of the maximum efficiency ηmax of the panel :

η⊥ = ηmax

(
1.81

27.07
| sin(I)|+ cos(I)− 1.86

27.07
| tan(I)|

)
(3.101)

≈ ηmax (0.067| sin(I)|+ cos(I)− 0.069| tan(I)|) .

According to Ref. [80], if the incoming light is along the gridlines, η∥ = ηmax. The gridlines
projection of alignment is along the vertical direction. Therefore, we have to consider both
angle of incidence of light on the solar panel that depend on the panel orientation with the
horizontal plane. The useful solar radiation which produces the photon-current Iph is deduced
from formula 3.102 as follows :

Ge f f = G
[
η⊥| sin(Γ − γ)|+ η∥| cos(Γ − γ)|

]
, (3.102)

where Γ − γ is the angle between the direction of light incidence and the gridlines of the panel.
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FIGURE 3.49 – Parallel and perpendicular efficiencies due to shadowing effect.

3.16 | The fitness function
The fitness function is the sum over hour of the solar irradiation G corrected with the

shadowing effect and the angular dependence of the cover blade transmittivity :

F = ∑
H

G.
(

η∥| cos(Γ − γ)|+ η⊥| sin(Γ − γ)|
)

︸ ︷︷ ︸
shadowing effect

. ηp(I)︸ ︷︷ ︸
transmittance of non polarized light

 (3.103)

The maximum of illumination efficiency max(F(ω, γ)) is searched for every day of 2019 and
2020. The required accuracy on the panel orientation being less than the degree, we use a
double loop on ω and γ with degree path of discretization.

3.17 | Parameters of the best orientation of the
photovoltaic panel
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3.17.1 | For Maputo province

FIGURE 3.50 – Best γ : tilt of the PV panel
relatively to the local horizontal plane

FIGURE 3.51 – Best ω : tilt of the PV panel
relatively to the N-S direction.

Figures 3.50 and 3.51 illustrate the parameters of the best orientation of photovoltaic panel
as a function of the day (2019-2020) for Maputo province (longitude σ = 32.58322◦, latitude
ϕ = −25.96553◦
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3.17.2 | For Mecula district

FIGURE 3.52 – Best γ : tilt of the PV panel
relatively to the local horizontal plane

FIGURE 3.53 – Best ω : tilt of the PV panel
relatively to the N-S direction.

Figures 3.52 and 3.53 illustrate parameters of the best orientation of photovoltaic panel as a
function of the day (2019-2020) for Mecula town ( longitude σ = 37.667◦, latitude ϕ = −12.116◦

The best azimuth rotation angle γ varies from east to west for increasing day of year.
Near the equinox (March 20, 2019 and 2020, September 23, 2019 ; September 22 2020), γ is close
to min(γ) + max(γ))/2 and is maximum or minimum at solstice days : June 21, 2019 ; June 20,
2020 ; December 22, 2019 ; December 21, 2020, respectively.
In case of static panel (that does not follow the sun trajectory), the best panel orientation also
depends on the solar radiation G (W m−2).
We deduce the best orientation of the panel, considering the maximum of the cumulative sum
of Ge f f over the two investigated years (2019-2020). For this calculation, we choose ηmax = 1.

— Best ω (the slope of PV panel measured from the horizontal plane).
Maputo : the mean value of ω◦ is 3 with standard deviation of 6◦. The most probable va-

lue is in [0,1]◦. Therefore, the best value of the panel slope measured from horizontal
plane is chosen to ω = 5◦. This little tilt could reduce the soiling of the photovoltaic
panel without significant loss of efficiency.

Mecula : the mean value of ω◦ is 10 with standard deviation of 11◦. The most probable
value is in [0,1]◦.
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Therefore, the common value of the panel slope measured from horizontal plane is also
chosen to ω = 5◦.

— Best γ (the azimuth rotation angle from south direction in the plane of the photovoltaic
panel). γ = 0 correspond to gridlines parallel to the N-S direction.
Maputo : the mean value of γ◦ is 34 with standard deviation of 6◦. The most probable

value is in [41,42]◦.
Mecula : the mean value of γ◦ is 38 with standard deviation of 4◦. The most probable

value is in [40,41]◦.
Therefore, we choose γ = 38◦ as a common value for the tilt of the photovoltaic gridlines
relative to the N-S direction.

The common best solutions at Mecula and Maputo are ω ≈ 5◦ and γ ≈ 38◦.
Therefore, the ideal position of the panel a little bit tilted and headed south.

Remark 3.6. If we include the maximum production of the PV panel :

Tcell = Ta + (tnmot − tnoc)
G

Gstd

pmax = pmax0.(1 + kpmax.(Tcell − tstd))
G

Gstd
The result is the same, the maximum power being independent on the angle of incidence.

3.18 | Influence of the aging of photovoltaic pa-
nels

Experimental laws of aging have been established in [81, 82, 83]. The influence of external
location and illumination of panels produces decrease of panel power production efficiency.
Authors of Refs. [81, 82, 83] give the results of fitting of experimental data, as function of time
t (years).

— The transmittance of the glass blade decreases from the initial transmittance T(0) as :

T(t) ≈ T(0)− 0.004t (3.104)

— The produced maximum electric power decreases from the initial transmittance T(0) as :

pmax(t) ≈ pmax(0)− 0.12t (3.105)
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— The series resistance increases as :

Rs(t) ≈ Rs(0) + 0.0012t (3.106)

— The parallel resistance decreases as :

Rp(t) ≈ Rp(0) + 0.018.t2 − 2.352.t (3.107)

This last law of aging is the most accurate (9 points for fitting against 5 more dispersed
points for the others).

These results depends on the studied photovoltaic panel but the global behavior and their
order of magnitude can be used to evaluate the effect of time on the production.

3.19 | Mathematical Modeling of the BESS
The battery parameters are normally provided by the manufacturer, in the modeling deve-

loped in this thesis, we consider the following parameters :

— I10 nominal battery current (A) : the current that can be delivered by the battery over 10
hours.

— C10 nominal capacity of the battery (A h) : the energy that ca be delivered by the battery
over 10 hours, under constant current discharge regime.

— nb number of battery elements, or cells (2 V) : in the following, we use the model
introduced by Copetti ([63] CIE model : series of 2V cells, which characteristics are
known by fitting experimental data).

— Vbat = 2.nb (V).

We suppose the dynamic regime of battery use (or floating charge model [64]). Indeed, each
hour, the battery can simultaneously charged (intensity current Ic) and discharged (intensity
current Id). Therefore, the battery current is Ibat = Ic − Id. Note that the control of each phase
may improve the use of battery [63]. However, this regime simplify the model, by neglecting
the hysteresis characteristic of charge and discharge (see discussion and figures (2) and (5)
in [84]).

References [5, 4] are based on the Copetti model [63]. We use their numerical results to check
the validity of our code. Copetti et al [63] discuss the charge or discharge currents expressed
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as a function of n hours I(Cn) = Cn/n.
We suppose therefore, the relation between the current and the capacity given by :

I10
C10

10
, (3.108)

C10 being the nominal capacity of the battery in a constant current discharge regime for 10
hours [4, (4) p. 4449]. Consequently, the number of 2V cells in the battery that can be de-
duced from the battery voltage and either the nominal current or the nominal capacity are
necessary to describe the battery.
In this BESS modeling, we assume the following input parameters :

— C10 = 2000 : Nominal capacity of the battery : C10 = 1000 Ah;
— I10 = 10 : Nominal current of the battery : I10 = 10 A
— nb = 24 : Number of cells in series nb = 24 for each battery
— Vbat=2.nb : Nominal voltage of each battery cell

charge current intensity
— Discharge Current=26 A, from Ref. [5]
— maxload=(Discharge Current).(Vbat) : Watt
— DeltaT=20 : Temperature of the battery
— ηAC/DC=0.95 : Efficiency of rectifier between

Wind-turbine and battery
— ηDC/AC=0.92 : Efficiency of inverter between

Battery and consumer demand
Note that the model of battery is tedious and that we have to combine some requirements

of models in various papers to increase the validity of our approach. For example, only some of
them include the effect of temperature variations on the performance of batteries. The models
of battery capacity and state of charges vary from one author to another. Authors include
different electrical and chemical models to describe the battery behavior. Some models use
dynamical evolution through differential equations, and coupled equations that require itera-
tive resolutions. To get a reasonable complexity of the model and to reduce the computational
time (for further repeated use of it), we choose a deterministic model that involves some
approximations.
Approximation : The floating use of battery : the simultaneous charge and discharge in conti-
nuous mode of use, simplifies the time behavior of the battery by suppressing the influence
of the time hysteresis (and characteristic time) of each change of mode. The discontinuity of
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current due to the control of operating modes like in Ref. [63] may be neglected, in case of 1
hour of charge or discharge, at each time step.

3.20 | Battery intensity current
In dynamic regime of battery use (or floating charge), the battery current is deduced from

both charge and load Pl [64] (kW) :

Ibat =
1000 · (nSCPSC + nWTPWTηAC/DC − Pl/ηDC/AC)

Vbat
, (3.109)

where :

— PSC is the power produced by each of the nSC solar-cells (kW),
— PWT is the power produced by each of the nWTwind-turbines (kW),
— ηDC/AC = 0.95 is the efficiency of the DC/AC converter (called "inverter" in [64]),
— ηAC/DC = 0.92 is the efficiency of the AC/DC converter (called "rectifier" in [64]).

We suppose a grid of nSC identical solar-cells and nWT wind-turbines. To test the codes, we
have to adjust the power produced by wind-turbines and solar-cells, and used by consumer.
We keep the time dependence of each power, but we impose the maximum value to compare
to the results with those in Ref. [5].

3.21 | Battery voltage
Assuming the above definitions, we introduce the battery voltage as following, depending

of the operating mode (d : discharge, c : charge, Eq. 3.109) :

Vd = nbEd − nbRd Id if Ibat < 0 (3.110)

Vc = nbEc + nbRc Ic if Ibat > 0 (3.111)

These equations are the same as those in Refs. [63, 5, 4]. Some papers show different approach :
polynomial fitting of Vbat as a function of SOC [64]. In Yahia paper [5], different cases for charge
are introduced.
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Operating type Intensity current Condition
Discharge Ibat < 0 Vd > 0.9VN

Strong discharge Ibat < 0 0.9VN > Vd > 0.7VN
Deep discharge Ibat < 0 0.7VN > Vd

TABLE 3.7 – Operation area for discharge of the battery, VN being the nominal voltage of the
battery.

Obviously, these characteristic are those of each battery cell with nominal voltage 2 V. We
must evaluate each unknown Ed, Ec (the electromotive forces) Rd and Rc (internal resistances)
that depend on the operating mode and on :

— the capacity C(T, C10, Ibat, t), the amount of energy that can be restored by the battery
(A h) (note the error in formula (3) in Laadissi paper [4]).

— the state of charge SOC(C, T, I10, C10, Ibat, t), indicates how electric charges is stored in
the cell at a given time t. SOC can be expressed in %.

t being the considered time of operation (charge or discharge), and T the temperature of the
battery that can be influenced by the Joule loss deduced from Rd and Rc.
The following equations involve ∆T = T − 25◦C. ∆T is the heating of the battery and is
generally set to an arbitrary but realistic value, between 5 and 45◦C in [63].

3.22 | Joule loss
The battery Joule loss can be expressed as :

PJ = Rd I2
d if Ibat < 0 (3.112)

PJ = Rc I2
c if Ibat > 0 (3.113)

Id and Ic are tables of positive values with size (day × hour = 731 × 24) to speed the
calculations. Id = 0 when Ic ̸= 0 and conversely.
The maximum temperature elevation due to Joule loss is given by :

∆TJ = 3600 ·
PJ

mCp
(3.114)

m being the mass of the battery and Cp its mean thermal capacity.
It remains to calculate the capacity C of the battery, its SOC, and Rc, Ec, Rd, Ed. These quantities
depend on the state of charge (SOC) and therefore on the charge and discharge efficiencies.
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3.23 | Charge and discharge efficiencies
The efficiency of the battery during charge is supposed to be 100% [63, 64, 4], on the

contrary, the efficiency in discharge mode is less than 100% : 90% in [64]. Due to Faradic
process, the efficiency in charge and discharge are [63, 4, 5] :

ηc = 1 − exp

(
20.73

I
I10

+ 0.55
(SOC − 1)

)
. (3.115)

ηd = 100%. (3.116)

In this case, the efficiency depends on SOC. In Ref. [64], the charge and discharge efficiencies
are approximated by :

ηc = 90% (3.117)

ηd = 100%. (3.118)

We prefer using the first expression of the efficiencies, that depends on SOC and therefore on
temperature. This efficiency dose not include the Joule losses.

3.24 | Battery capacity
The calculation of the battery capacity C is necessary to calculate the SOC. Copetti et al [63]

give a typical fit of a 2V battery cell :

C =
1.67C10

1 + 0.67
(

Īd
I10

)0.9 (1 + 0.005∆T) (3.119)

During discharge, C is limited by the current rate. Copetti uses Id in this formula, even if
the same notation I is used in all formula. Therefore, we suppose he means Ibat bu in discharge
mode.

— Id = 0 ⇒ C = 1.67C10(1 + 0.005∆T) (charge).
— Id < I10 ⇒ C > C10(1 + 0.005∆T).
— Id = I10 ⇒ C = C10(1 + 0.005∆T) with only temperature correction.
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— Id > I10 ⇒ C < C10(1 + 0.005∆T).
When the discharge current tends to zero, the maximum capacity that can be removed is

about 67% over the capacity C10 at 25◦C.
In Refs. [4, 5], the mean value of the discharge current is used.
If we suppose that the average is on one hour, we find again Id.

C =
1.67C10

1 + 0.67
(

Īd
I10

)0.9 (1 + 0.005∆T) (3.120)

The capacity is a function of :
— ∆T The heating of the battery compared to the ambient temperature of 25◦C. It is assu-

med to be identical for all elements of the battery.
— Īd the discharge current. (A).
Copetti et al [63] suppose it is valid for Fulmen EF2050 (C10 = 50A h), Varta Vb624 (C10 =

100A h) and ATSA Tudor (C10 = 180A h).
This formula is used in Refs. [63, 4, 5]. However, the capacity has no dependence on current
intensity in [64]. Let us note that this formula depends on the used battery cell.
As T varies between 5 to 45◦C, the temperature correction can be smaller or greater than 1.
We have to calculate the mean value of capacity expressed as :

C = C10 1.67/(1 + 0.67(Id/I10)0.9) (1 + 0.005.∆T) (3.121)

FIGURE 3.54 – Battery Capacity from our
code

FIGURE 3.55 – Capacity from [5]
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Figures 3.54 and 3.55 illustrate the Capacity of the battery, with nb = 24 elements, C10 =

260A h, I10 = 26A, as a function of the average discharge current.

3.25 | Battery State-of-Charge (SOC)
The state of charge SOC of the battery is a function of the capacitance Cbat and the amount

of charge missing at the battery Qm which depends on the operating mode of the battery. The
determination of SOC is critical to describe the behavior of the battery in charge and discharge
operating modes, but tedious. Authors introduce different models for SOC.

— In Refs. [63, 5, 4], it is defined by :

SOC = 1 − Id × t
C

. (3.122)

The value of SOC is therefore between 0 and 1. Copetti et al relate C to the battery
efficiency and Idt is the missing charge quantity in the battery.

— In Ref. [4], the definition of the SOC is the same but they introduce the total charge
Qbat in the battery, involving the faradic efficiency (also depending on SOC, Eq. 3.131),
therefore we introduce the battery efficiency ηbat :

Qbat = Qt−1 + ηbat

t∫
0

Ibatdt, (3.123)

where ηc depends on the operating mode of the battery. The integral boundary 0 is
strange as the previous state Qt−1. Therefore, we would rewrite :

Qbat(t) = Qbat(t − 1) + ηbat

t∫
t−1

Ibatdt, (3.124)

This formula clarifies the role of the battery faradic efficiency in Copetti et al calcula-
tions. For one hour, the intensity current being constant, the charge in battery can be
written :

Qbat(t) = Qbat(t − 1) + ηbat Ibatt. (3.125)

Therefore, the SOC is deduced :

SOC(t) =
Qbat

C
=

Qbat(t − 1) + ηbat Ibatt
C

. (3.126)

This formula handles the operating mode at time t.
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— In Ref [64] introduce additional time dependence deduced from the self discharge rate
σ = 0.002 :

SOC(t) = SOC(t0)
[
1 − σ

24
(t − t0)

]
+

t∫
t0

Ibatηbat
C

dt. (3.127)

Considering constant current for t − t0 = 1h :

SOC(t) = SOC(t − 1)
[
1 − σ

24

]
+

Ibatηbat
C

. (3.128)

Again, Ibat is either negative in discharge mode, positive in charge mode. Therefore, this
definition of SOC is iterative, includes the model of self-discharge mode and the battery
capacity.

— In Ref. [85], the calculation of the charge depends on battery voltage and current. The-
refore, it leads to autocoherent equations, these electrical characteristics depending on
SOC or requires different fittings of the voltage and intensity. The same approach is
proposed in Refs. [86, 64].

For coherence of the whole model of battery, we choose to pursue with the fitted data in
Ref. [63] also used in Refs. [4, 5], but with the self discharge correction (Eq. 3.128) and the
battery capacity in Eq. 3.120. The value of the battery efficiency is supposed to be a constant at
this stage [64] :

ηbat = 1 in discharge mode (3.129)

ηbat = 0.90 in charge mode (3.130)

The electric energy loss in battery is due to faradic performance, relating the capacity to the
battery to store energy (Laadissi [4] and Copetti [63] p. 286, citing reference 8). The efficiency
of charge drops to zero at full charge. The charge efficiency is represented by the following
function :

ηc = 1 − exp

(
20.73

I
I10

+ 0.55
(SOC − 1)

)
. (3.131)

The numerical parameters are found by fitting this equation to actual data (tabular positive
plates and low-antimony alloys) ([63], Eq. (5) p. 209).
To derive the state-of-charge formula, to include the state-of-charge that depends on the capa-
city as referred to in [63] requires a series of calculations as folowing :
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ηbat = ηc(t − 1) = 1 − exp

(
20.73

I
I10

+ 0.55
(SOC(t − 1)− 1)

)
(3.132)

SOC(t) = SOC(t − 1)
[
1 − σ

24

]
+

Ibatηbat
C

(3.133)

Therefore, we can deduce SOC(t) from SOC(t − 1) and ηc(t − 1).
In our model, we consider time and day evolution. Consequently, we should consider the SOC
and ηc at the beginning of a given day equal to the SOC and ηc at then end of previous day.
The data used should therefore cover all the hours of the day. If we consider only a period of
the day (between 6 AM and 7 PM), we must suppose that during the night, the wind-turbine
produce the energy that is necessary to answer to the consumer demand.

FIGURE 3.56 – Battery SoC of this thesis FIGURE 3.57 – Battery SoC from [5]

Figures 3.56 and 3.57 illustrate the State of charge of the battery, with nb = 24 elements,
C10 = 260A h, I10 = 26A, as a function of capacity, for t = 3h.
SOC can be calculated easily at any point during the discharge period, nevertheless during
(re)charge it is more difficult. Generally, the efficient region is where SOC is below 0.7 and Vc

is less than 2.3V per cell [63, p. 285]. Therefore, the charge efficiency efficiency ηc is given in
Sec. 3.25 (Eq. 3.131).
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3.26 | Discharge voltage, EMF and resistance
The battery voltage with nb cells in discharge mode is :

Vd = nbEd − nbRd|Id|, (3.134)

with :

Ed = 2.085 − 0.12(1 − SOC) = 1.965 + 0.12 SOC (3.135)

Rd =
1

C10

(
4

1 + |I|1.3 +
0.27

SOC1.5 + 0.02
)
(1 − 0.007∆T) (3.136)

3.26.0.1 | Comparison with Ref. [5]

FIGURE 3.58 – Discharge voltage, Vd FIGURE 3.59 – Discharge voltage [5]

Figures 3.58 and 3.59 illustrate the Voltage of the battery, with nb = 24 elements, C10 =

260A h, I10 = 26A, as a function of current.
The resistance of discharge (Eq. 3.136) is evaluated as a function of the state of charge (SOC) in
Yahia paper. When the battery is fully charged, Rd is small and it increases with smaller SOC.
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3.26.0.2 | Discharge Resistance Rd

FIGURE 3.60 – Discharge resistance, Rd FIGURE 3.61 – Rd from [5]

Figures 3.60 and 3.61 illustrate the discharge resistance Rd of the battery, with nb = 24
elements, C10 = 260A h, I10 = 26A, as a function of the state of charge.

3.26.0.3 | Discharge Voltage Vd

FIGURE 3.62 – Discharge voltage, Vd
FIGURE 3.63 – Vd from [4]
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Figures 3.62 and 3.67 illustrate discharge voltage with nb = 1 element, C10 = 62A h, I10 =

10A, as a function of time. There is a difference between our results and those of Laadissi
et al : for the discharge, they probably introduce a discharge threshold after 5.8 hour, that is
not explained in the text and included in the formula they published. The global behavior
is the same for shorter time. They do not mentioned the temperature elevation for CIEMAT
calculations.

3.27 | Charge EMF, voltage and resistance
The battery voltage with nb cells in charge mode is :

Vc = nb · Ec + nb · Rc · I, (3.137)

with :

Ec = 2 + 0.16 · (SOC) (3.138)

Rc =
1

C10

(
6

1 + |I|0.86 +
0.48

(1 − SOC)1.2 + 0.036
)
(1 − 0.0025∆T) (3.139)

3.27.0.1 | Charge Voltage Vc

FIGURE 3.64 – Charge voltage, Vc FIGURE 3.65 – Vc by [5]
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Figures 3.64 and 3.65 illustrate Voltage of the battery, with nb = 24 elements, C10 = 260A h,
I10 = 26A, as a function of current. The resistance of charge (Eq. 3.139) is evaluated as a
function of the state of charge (SOC) in Yahia paper. When the battery is fully charged, Rc is
great and when the charge efficiency is small.

The charge may induce gassing process. It results in an increase of the final charge voltage Vcc

with current intensity and with decreasing temperature. The gassing voltage Vg is :

Vg =

(
2.24 + 1.97 ln

(
1 +

I
C10

))
(1 − 0.002∆T). (3.140)

The final charge voltage is :

Vcc =

(
2.45 + 2.011 ln

(
1 +

I
C10

))
(1 − 0.002∆T). (3.141)

The overcharge phenomenon (gassing evolution) can be represented by an exponential func-
tion, suc as

Vc = Vg + (Vcc − Vg)

(
1 − exp

(
Ahr − 0.95C

Iτ

))
. (3.142)

The time constant τ is :

τ =
17.3

1 + 852
(

I
C10

)1.67 . (3.143)

Operating type Intensity current Condition Charge efficiency
Charge I > 0 V < Vg 0 < ηc < 1
Gassage I > 0 Vg < V < Vcc 0 < ηc < 1

Saturation I > 0 V = Vcc ηc = 0

TABLE 3.8 – Operation area for charge of the battery.
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3.27.0.2 | Charge Voltage as function of time Vc(t)

FIGURE 3.66 – Charge voltage Vc(t) FIGURE 3.67 – Vc(t) by [4]

There is a difference between our results and those of [4] as for the discharge, the curves
are. The global behavior is the same for shorter time. They do not mentioned the temperature
elevation for CIEMAT calculations.

3.28 | Range of ∆t
The previous models of currents and voltages handle factor terms of the form (1− a∆t). The

temperature correction cannot be negative number, the resistances being positives numbers.
— Ic, Vc, Rc : a = 0.0025◦C−1,
— Id, Vd, Rd : a = 0.0007◦C−1,
— Vg, Vcc : a = 0.002◦C−1.
Therefore, the maximum of a in the above equations being 0.0025, the maximum value of

∆T is :

max(∆T) =
1

0.0025
= 40◦C−1 (3.144)

If ∆T = 40◦C, the charge voltage is a constant of the charge current. We have to control the
temperature elevation we consider in the following.
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Note : in Ref. [64], Zhou et al use about the same temperature coefficient, but with temperature
in K instead of ◦C.

3.29 | Energy loss in battery : battery efficiency
and temperature elevation

Two sources of energy loss are under consideration : faradic and Joule losses.

3.29.1 | Joule efficiency

The Joule energy loss is due to the resistances of charge Rc and discharge Rd, therefore, the
battery efficiency due to Joule loss can be evaluated, in both operating modes :

ηr =
Ed
Vd

+
Ec

Vc
(3.145)

The total efficiency of the battery being :

ηt = ηr.ηc (3.146)

The global calculation of the relation between the input (from wind-turbines an solar-cells)
power Pi and possible output (load) power Po can be written :

Po = ηtPi = ηcηrPi (3.147)

=

[
1 − exp

(
20.73

I
I10

+ 0.55
(SOC − 1)

)
×
(

Ed
Vd

+
Ec

Vc

)]
Pi (3.148)

As Po and the target Pi are known, we should deduce the characteristics of required batteries.
(I10 and C10).
Let us note that the Joule loss of energy contributes to temperature elevation of the battery. The
temperature elevation of the battery (mass m and specific heat Cp) is :

∆T = 3600
Rc.I2

c + Rd I2
d

mCp
− ∆T(radiation)− ∆T(convection) (3.149)
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The value of Cp must be found. The cooling by radiation and convection should be eva-
luated as well. In "Thermal management of Li-ion batteries using PCM- Metal foam compo-
site : Experimental and numerical investigations" by EL IDI et al (https://www.sft.asso.
fr/DOIeditions/CFT2020/PDF/148_doi.pdf), we find an order of magnitude of Cp : Cp ≈
1500 or 2000J K−1 kg−1. The mass of the battery can be found in technical notes.
Therefore, the temperature elevation due to Joule effect, including the heat loss by radiation
and convection could be deduced.
The problem is that the temperature elevation is supposed to be known to calculate SOC, Ic,
Id. . . How to solve this auto-coherent problem? With a loop of adjustment? From a preliminary
approximation? Or it is too complicated and we suppose an arbitrary temperature elevation,
like most of other authors?

3.29.2 | Best conditions for keeping health of battery

In [5] it is atated that the voltage of the battery should be less than Vg (no gassing, Eq. 3.140,
page 116) and greater than 0.7VN = 1.4nb, with VN the nominal voltage, [64] a working voltage
range of 1.75-2.1V is recommended for discharge analysis, [63] the efficient region is where
SOC is below 0.7 and Vc is less than 2.3V per cell, [87] using SOC calculation that are close to
ours.
The battery life is extended if, at each time, SOC verify :

(1 − DOD)CB ≤ SOC(t) ≤ CB, (3.150)

with DOD between 30% and 50% and

CB =
Daily charge use × Daily remaining self-sufficiency

DOD × ηc
(3.151)

This formula can be usefull to help select the battery characteristic.

3.30 | Battery parameters using input data from
section 3.3
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3.30.1 | Charge current Ic and discharge current Id

FIGURE 3.68 – Battery charging current, Ic FIGURE 3.69 – Battery discharge current, Id

Charging current is, by definition, the amount of electrical current passed from a source
(generating or storage) to a device that consumes or stores energy. The purpose of a battery is
to store energy and release it when needed in a controlled manner. The current delivered by the
battery is the discharge current. In the case under analysis, the battery works as an auxiliary
power source, which provides energy during generation interruptions and fluctuation of the
produced power, but its main role is to assist wind turbine generators during the nights when
photovoltaic solar panels cease due to unavailability of solar radiation.
It is expected (likely) that the rate of charging current will be high during the daytime period
when the two generator subsystems (WTG and PVG) are in full operation to charge the batte-
ries, while the rate of discharging current is expected to be more pronounced during the nights
when the photovoltaic solar panels do not produce power, the battery begins to play its role in
compensating the power to its fullest.

Charging current is more likely to occur during the day, while discharge current is more
likely to occur at night.
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3.30.2 | Battery capacity Cb

FIGURE 3.70 – Battery capacity Cb

The capacity of a battery expresses the amount of energy that can be stored and indicates
the current that a battery can deliver over time. The maximum values of battery capacity are
recorded in the daytime when the two subsystems (WTG and PVG) work simultaneously when
we have high rates of charging current. It is expected (or likely) that the amount of charge
stored in the battery will decrease during the nights when the battery assists the WTG farm to
meet demand needs.
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3.30.3 | Battery State-of-Charge SOC

FIGURE 3.71 – Battery State-of-Charge SoC

State of charge (SoC) expresses the ratio between the available electrical charge and the
battery capacity, indicating the capacity that is currently a function of the rated capacity. SoC
is essential as it provides information on how long the battery can last before it needs to be
charged.
We have observed that the SoC variation illustrated in Figure 3.71 is more likely to occur in the
daytime period when the batteries can charge than in the nighttime period when the battery
supplies power to demand.
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3.30.4 | Charge voltage Vc and discharge voltage Vd

FIGURE 3.72 – Battery charging voltage, Vc
FIGURE 3.73 – Battery descharging voltage,
Vd

Batteries with high internal resistance will take longer to fully charge, as well as losing
energy during discharging. Batteries with the lowest internal resistance can usually be charged
or discharged with higher currents, the desirable is that we have a lower resistance, knowing
that the higher the internal resistance the less current the battery will be able to provide, and
the higher the internal resistance the more the battery will heat up.
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3.30.5 | Charging electromotive force Ec| Discharging electromotive force

Ed

FIGURE 3.74 – Charging electromotive force,
Ec

FIGURE 3.75 – Discharging electromotive
force, Ed

Charging voltage expresses the amount of battery voltage when the battery is fully charged
(or the voltage available at any point during the charging process) while the amount of battery
voltage available at any point while the battery is discharging. The maximum values of the
charge voltage are reached in the day period, although very rarely, however, the discharge
voltage is predominantly high during most of the day, but with greater incidence during the
day period when the batteries are highly charged.
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3.30.6 | Charging power Pc and discharging power Pd

FIGURE 3.76 – Battery charging power, Pc FIGURE 3.77 – Battery discharge power, Pd

The power supplied to the battery per unit of time is much more likely in the daytime
hours when the two subsystems are operating at full, than in the nighttime hours, including
during intermittence and fluctuation intervals of the produced power. The amount of energy
that charges the battery per unit of time is very low during night time hours.

3.30.7 | Comments on the results of modeling the battery parameters

In general, the variation of the weather state over the hours of the day influences the
behavior of the battery operating parameters. Furthermore, the parameters are influenced by
night effect (no solar radiation, no power production by photovoltaic solar panels) and day
effect (with solar radiation for power production by photovoltaic solar panels).

Taking into account the persistence of uncertainty related mainly to the variable availability
of RES, it is desirable that we have charged batteries to compensate for fluctuations in power
generation. The results of the modeling of the battery operating parameters demonstrate that
the parameters are influenced not only by the variation of the input data over the hours of the
day, but also by the period of day,i.e., during the day (with available solar radiation) and at
night (no solar radiation available), known that a photovoltaic solar panel can only generate
power during the day when there is availability of solar radiation and during the night the
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generation is null.

The results demonstrate the charging current shows higher daytime numbers meaning faster
charging speeds, while the discharge current shows higher nighttime values meaning faster
discharging speed.

3.31 | Hybrid microgrid optimization
The microgrid of interest is classified as Isolated Hybrid Battery-Solar-Wind Power Gene-

ration System (HBSWPGS), a name justified by its configuration as illustrated in Figure 3.1 on
page 38. The microgrid as a power generation system in a hybrid configuration, is composed
of a farm with a certain number nWT (or nWTG) of wind turbine generators, and another farm
with a certain number nPV (or nPVG) photovoltaic generators (or photovoltaic solar panels).
The composition of the hybrid microgrid includes an Energy Storage System composed of a
certain number nB of batteries, whose function is summarized in the following description :

(i) When the power produced is greater than the power demanded (when there is excess
power production), the surplus production (or surplus power) is stored in the batteries
within the limit of the storage capacity.

(ii) When the power produced is less than the power demanded (when there is a power
production deficit), the production deficit must be compensated by the batteries within
the limits of the available power.

(iii) The role of batteries in RES-based power generation systems includes mitigating the
effects of fluctuating output power, system overload, and peak consumption.

The optimization of the microgrid as a whole is based on the premise that it must be able
to produce and supply power at a sustainable cost, thus, in the optimization we include the
subsystems acquisition cost component assuming :

(a) Estimated cost of a wind turbine is 8000 $.

(b) Estimated cost of a photovoltaic solar panel is 2000 $.

(c) Estimated cost of a battery is 250 $.

The total cost of each piece of equipment includes operating costs (example : transport,
storage, taxes and fees) estimated at 15% of the purchase price.
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The method of optimization is simply a triple nested loops on nWT, nSP and nB. The space of
search are nWT ∈ {0; ...; 10}, nSP ∈ {0; ...; 300}, nB ∈ {0; ...; 300}. For each triplet of numbers,
the number of hours for which the produced power is less than the demand and stored. The
rate of consumer demand satisfaction is calculated.

During the microgrid optimization process, we evaluate the microgrid price by researching the
best configuration at the lowest possible cost, which means, the purpose is to determine the
microgrid that provides power and satisfies the demand needs at a low and sustainable cost,
for this, we optimized two microgrids for two types of consumer demand : one is typical of
agrarian region, the other of industrial. We compare the optimization parameters of the two
systems as shown below. In the next subsections, we give the solar radiation, the useful solar
radiation for the previously determined best orientation of fixed solar panels in Maputo, with
polarization and shadowing corrections, and the electric power produced by solar panel. We
also plot the wind speed and the power produced by wind turbines. Then, the two consumer
demands are shown.

3.31.1 | Solar irradiance and power produced by photovoltaic panel

FIGURE 3.78 – Raw solar irradiance. FIGURE 3.79 – Useful solar radiation.

The useful solar irradiance is reduced when the angle of incidence is far from the normal
one : in winter, and at sunrise and sunset.
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FIGURE 3.80 – Power produced by PVG.

The power produced by solar panels follows the useful solar irradiance.

3.31.2 | Wind speed and power produced by wind turbine generator

FIGURE 3.81 – Wind speed. FIGURE 3.82 – Power produced by WTG.

The power produced by wind turbines roughly follows to the wind speed, even if the
conversion is not linear.
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3.31.3 | Model of power demand (consumption)

FIGURE 3.83 – Industrial power demand. FIGURE 3.84 – Agrarian power demand.

The model of power demand (consumer load) is mainly along the working day in the
industrial case, but on the evening in agrarian case. Moreover, it is 4.75 times higher. The
agrarian case corresponds to an individual usage of electricity, whereas the industrial one
involves an additional and major demand along the day.
As previously mentioned in section 3.3, Mozambique has medium-low intensity wind speed
availability, without significant variations in its hourly average, however, solar radiation du-
ring the hours of the day varies a lot with peaks around noon hours, therefore, the availability
and unavailability of solar radiation during the day and during the night respectively, deter-
mines the performance of the system hourly.
The pattern of demand (or consumption) of power in a context of a basically agrarian district
(such as Mecula), presents peaks of consumption (or demand) outside peak generation hours,
as illustrated in figures 3.10, 3.12, 3.83 e 3.84, which highlights the importance of Energy
Storage Systems (ESS) that must supply the generation deficit by photovoltaic solar panels due
to the unavailability of solar radiation during the night

3.31.4 | Optimization results

We give the results of microgrid optimization in four cases.
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Case 1 combination of the three devices : solar panels, wind turbines and batteries,
Case 2 combination of the two devices : wind turbines and batteries,
Case 3 combination of the two devices : solar panels and batteries,
Case 4 combination of the two devices : solar panels and wind turbines.

The solution is not unique, therefore, in tables, the number of batteries, wind turbines and solar
panels are given assuming the lower cost of microgrid.

3.31.4.1 | Case 1 : wind turbines, solar panels and batteries

Characteristic Industrial Agrarian
Price 82.512$ 61.525$

Failures (h) 0 0
Wind turbines 6 4
Solar panels 1 0

Batteries 87 86

TABLE 3.9 – Best microgrid, including wind turbines, solar panels and batteries.

Discussion about case 1

(i) High cost, mainly wind turbines.

(ii) No failure in demand serving.

(iii) About the same microgrid type in both cases.

(iv) The wind speed should be carefully measured in location to assess the results.

3.31.4.2 | Case 2 : solar panels and batteries

Characteristic Industrial Agrarian
Price -$ 1.165.525$

Failures (h) - 303
Wind turbines 0 0
Solar panels - 497

Batteries - 78

TABLE 3.10 – Best microgrid, including solar panels and batteries (no wind turbine).
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Discussion about case 2 :

(i) No solution for the industrial case.

(ii) High cost and wide required surface to implement the photovoltaic panels.

(iii) 303 hours of failure in the agrarian case.

(iv) Required caring of photovoltaic panels surface.

(v) No noise pollution by wind turbines.

3.31.4.3 | Case 3 : wind turbines and batteries

Characteristic Industrial Agrarian
Price 94.587$ 61.525$

Failures (h) 1 0
Wind turbines 6 4
Solar panels 0 0

Batteries 137 86

TABLE 3.11 – Best microgrid, including wind turbines and batteries.

Discussion about case 3

(i) The failure probability is counterbalanced by the increase of wind turbines and batteries.

(ii) No solar panel maintenance (regular cleaning requires by its quasi horizontal position)

(iii) Wide grid of batteries : possible problem due to aging.

3.31.4.4 | Case 4 : wind turbines and solar panels

Characteristic Industrial Agrarian
Price 1.196.000$ 772.800$

Failures (h) 1125 312
Wind turbines 10 10
Solar panels 480 500

Batteries 0 0

TABLE 3.12 – Best microgrid, including wind turbines and solar cells (no battery).

Discussion about case 4
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(i) The batteries are necessary to serve the demand.

(ii) High cost of such microgrid.

(iii) Wide grid of solar panels.

3.31.5 | Global discussion

Batteries appears to be useful in the investigated cases. The best solution appears to be a
combination of batteries, wind turbines and solar panels.

If we tolerate a given rate of fails in satisfying the consumer demand, the cost of microgrid
can be adjusted accordingly. For example, the best microgrids are the following as a function
of the number of tolerated fails, nB being the number of batteries, nWT that of wind turbines
and nSP that of solar panels.

Agrarian : 1 hour over the two years : nB = 86, nWT = 4, nSP = 0, cost : 61.525$.
Industrial : 1 hour over the two years : nB = 87, nWT = 6, nSP = 1, cost : 82.512$.
Agrarian : 24 hours over the two years : nB = 78, nWT = 1, nSP = 0, cost : 31.625$.
Industrial : 24 hours over the two years : nB = 100, nWT = 1, nSP = 0, cost : 37.950$.
Agrarian : 240 hours over the two years : nB = 75, nWT = 1, nSP = 0, cost : 30.762$.
Industrial : 240 hours over the two years : nB = 79, nWT = 1, nSP = 0, cost : 31.912$.

The increase of fail tolerance from 1 hour over two years to 240 leads only to about a half
money-saving and corresponds mainly to a decrease of the number of batteries and wind
turbines. Of course, these examples of data strongly depend on the price and type of considered
devices. Moreover, the input data (wind speed, solar irradiance, and temperature) must be
accurately known on a wide period of time.

3.32 | Probabilistic forecasting of output power
generation

In RES-based microgrids, estimating the output power and forecasting the generation capa-
city of the microgrid is an important procedure when modeling or sizing a power generation
farm. Normally, the estimation of the output power of a WTG or a PVG is carried out by the
use of characteristic curves and deterministic models incapable of providing exact (or precise)
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estimates of output power values, i.e., are not able to provide correct results under different
conditions. To accommodate fluctuations in WTG and PVG output power due to variability
and intermittence of wind speed and solar radiation in RES-based microgrids, probabilistic
forecasting techniques for power generation will be included, that is, the WTG and PVG out-
put power results obtained by deterministic models will be treated in terms of probabilistic
modeling. The objective of probabilistic modeling is to include the stochastic component on the
results obtained from deterministic modeling, thus including the impact of uncertainty [68].

3.32.1 | Probabilistic forecasting technique

According to [54] most probabilistic forecasting approaches are based on single models,
however, it would be difficult to find a perfect single model for the forecasting task in different
situations, thus, [88] states that model combination is more skillful than single models, as
the model combination exploits the individual advantages of each single model to provide
better results. In this context, [54] presented a Multi-model Combination (MMC) approach for
probabilistic wind power forecasting whose formulation is used in this thesis as described in
section 2.12.
The probabilistic multi-model combination (MMC) approach used in this thesis is based on the
principle described in section 2.12, presented in two studies namely :

— The study of [68] suggests that we cannot find models that provide better results under
different conditions, in addition, the study presents a model to improve the estimation
accuracy of the output power of a WTG comparing deterministic models and probabi-
listic models, proving the superiority of probabilistic models.

— According to [54], many forecasting approaches are based on individual probabilistic
models that are not perfect for all forecasting tasks. Thus, the principle of Multi-Model
Combination (MMC) model is proposed to take advantage of particular abilities and
superiorities of each individual probabilistic model participating in the combination.
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3.33 | Diagram of probabilistic modeling of Pwtg

and Ppvg

FIGURE 3.85 – Probabilistic Multi-Model Combination (MMC) model for HSWPGS.
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The diagram in figure 3.85 illustrates a model based on the principle of an MMC model,
idealized for application in an HSWPGS system whose operating principle is described in the
following terms :

(i) Input data
The model depends entirely on environmental variables defined as input variables, na-
mely wind speed v , solar radiation s and ambient temperature ta.

(ii) RES-to-Power Conversion
Model contains a RES-to-Power conversion step in which wind speed is converted into
WTG output power Pwtg, solar radiation and ambient temperature are converted into
PVG output power Ppvg. Conversion equations are described in section 2.9.

— Challenges and limitations of the deterministic part of the model
Pwtg and Ppvg are variables of the estimated output power of the WTG and PVG
respectively, obtained through parametric deterministic models in which the influence
of uncertainty is not taken into account.

— Strategy to reduce the challenges and limitations of the model
Improving the accuracy of estimating (or forecasting) the output power of the WTG
and PVG demands the use of probabilistic models that are presented in subsequent
steps.

(iii) Normality test
In this model, the hourly data of the output power of the WTG and the PVG are taken as
input variables (or input data) of the probabilistic model. Principle based on the study of
[68].
Preliminary statistical analysis consists of testing normality, not as an end if the data show
a normal distribution (or normality), but as a means of gaining knowledge about the sta-
tistical nature and behavior of the data, to make timely decisions on appropriate statistical
procedures. In this thesis, the normality test was performed using the Anderson-Darling
Test.

(iv) Random candidate models
The estimated output power data of the WTG and the PVG are consecutive series of
hourly averages as illustrated in equations 3.5 and 3.6, where hourly data sets of Pwtg

and Ppvg (one on each side) corresponding to the same hour are taken simultaneously.

135



Chapitre 3. Materials & Methods 3.33. Diagram of probabilistic modeling of Pwtg and Ppvg

Additionally, we have two sets m1 and m2 of individual probabilistic models f (x) and
g(x) also called candidate models :

m1 = { f1(x), f2(x), · · · , fn(x)} (3.152)

and
m2 = {g1(y), g2(y), · · · , gn(y)} (3.153)

In sets m1 and m2 any individual probabilistic model with forecasting abilities can be a
candidate.
The set of probabilistic models m1 is tested on the data set Pwtg, and m2 is tested on Ppvg

for each specific hour h.

(v) Computation of statistical parameters
This step aims at the following :
— Compute the statistical parameters of each individual probabilistic model (or candi-

date probabilistic model) against the data on which such models are tested.
— Compute the Log-likelihood (Log-L(θ)) and the Akaike Information Criteria (AIC) as

statistical parameters that provide the goodness-of-fit of each model in relation to the
dataset on which such models are tested.

— Compute of Akaike weights ωi : The weight with which each model participates in
the combination

It is important to note that the AIC value alone for a single distribution (or individual
distribution) does not tell us anything, that is, it does not provide useful information for
formulating a statistically valid decision. The AIC value is only useful when compared to
the AIC values of other models. AIC compares the relative “goodness-of-fit” of one model
(distribution) versus that of other models. The distribution with the lowest AIC value is
usually the model with the best goodness-of-fit. There is an inverse proportionality, the
smaller the AIC value, the better the goodness-of-fit with respect to the data of interest
[89].
The concept of the MMC model basically consists of combining several single models,
each single model participates in the combination with a weight that is calculated as a
function of the AIC value of each model respectively.

(vi) Probabilistic multi-model combination model
Using the AIC values of each single model in descending order, we consequently sort the
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respective models in ascending goodness-of-fit order, and correspondingly (relative to
the AIC value) we place the respective weights (Akaike weights), thus, we multiply each
probabilistic model by its weight, as described in section 2.12.0.3.
Considering that it is a Hybrid Solar-Wind Power Generation System (HSWPGS), we will
obtain two MMC model equations, one for forecasting and estimating the WTG output
power and another for PVG expressed as : f (x) = ω1 · f1(x) + ω2 · f2(x) + · · ·+ ωn · fn(x)

g(y) = λ1 · g1(y) + λ2 · g2(y) + · · ·+ λn · gn(y)

Considering x = Pwtg, y = Ppvg, fn(x) corresponds to the family of models from set m1, and
gn(y) from family of models from set m2.
In this stage of the diagram, we intend to use a probabilistic approach that allows quantifying
global uncertainty, estimating output power, modeling Energy Storage Systems (ESS) conside-
ring sources of uncertainty.
In the section that presents the predictive modeling of the output power of the WTG, the PVG
(modeling of photovoltaic cells), the behavior of the Energy Storage System system, and the
propagation of uncertainty.
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4

Conclusions

After an extensive deduction approach and an attempt to simplify modeling equations
for the photovoltaic solar panel and use of battery modeling equations, the results obtained
through mathematical modeling and graphic representation allow us to observe the behavior
of the parameters as a function of the hourly variation of the weather state over the hours of
the day.

4.1 | Strength of the approach
We summarize the strength of our approach.

(i) Easy improvements and adjustments of models and prices of wind turbines, solar panels
and batteries : open models.

(ii) The transmittance and shadowing effect are included in the model of photovoltaic panels.

(iii) The latitude and longitude are addressed in the model of photovoltaic panels (optimiza-
tion of the panel orientation).

(iv) Realistic consumer demand, wind speed, temperature, solar irradiation are considered.

(v) High speed of simulations : the optimization of microgrid requires less than 15 minutes
on a standard laptop.

(vi) Possible evaluation of the influence of uncertainties of manufacturer parameters on the
produced power.

(vii) Possible inclusion of the aging of the microgrid over years.
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(viii) The whole model of microgrid can be used for statistical studies.

4.2 | Weaknesses of the present model
We summarize the weakness of our approach.

(i) Input data must be available (speed of wind, solar irradiance, temperature, consumer
load). The characteristic of the measured spectrum of the solar irradiance should be known
and adapted to the solar cells.

(ii) Strong dependence of the results on the input data. The possible evolution of input pa-
rameters, especially the climate change and increase of the consumer demand should be
evaluated to design long time use of microgrid.

(iii) The whole environmental and societal footprints, including materials inputs and recy-
cling costs are not integrated in the cost evaluation and the carbon footprint is not eva-
luated.

4.3 | Achieved Aims and Objectives
(i) We evaluated the uncertainty about the output power of the power generation subsys-

tems as a function of hourly weather changes throughout the day.

(ii) We evaluated the uncertainty and sensitivity of the parameters of the photovoltaic solar
panel as a function of hourly variations in the weather throughout the day.

(iii) We evaluated the behavior of the battery operating parameters in response to the night
and day periods and as a function of the hourly variations of the weather throughout the
day.

(iv) We optimize the microgrid configuration to find an option that ensures power supply at
low and sustainable costs.

4.4 | Critique and Limitations
(i) The literature provides several studies on photovoltaic cell modeling, but the models

appear to be quite complex. More simplified models are still necessary, in addition, the
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deduction of the formulas of the parameters must always be accompanied by assump-
tions that can make the models of photovoltaic cells discrepant.

(ii) The battery modeling approaches available in the literature show that battery models are
not yet perfect, and present a considerable level of complexity that demands increasing
simplification.

4.5 | Final Remarks
The output power of the WTG and PVG calculated in this work are essentially determi-

nistic, that is, such power does not include uncertainty, thus, a probabilistic modeling (use of
probabilistic models) to model the output power is needed to obtain quantified uncertainty
information. In this work, the purely probabilistic modeling was not conclusive, but the idea
and the concept are properly formulated.
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Summary in English

General context of the thesis
The global energy generation sector continues to be identified as being the main responsible

for the emission of greenhouse gases into the atmosphere due to the use of fossil fuel sources
such as coal, oil and gas for energy generation. Greenhouse gases are a problem for planet
earth, as they cause global warming and other environmental problems capable of making life
on earth unfeasible. Thus, the global community (Government authorities and international
organizations) is mobilized to reverse the situation (of the emission of greenhouse gases into
the atmosphere, global warming, environmental damage and other consequences) proposing
a global energy transition from fossil fuel sources to renewable energy sources. Although the
generation of energy through the use of renewable energy sources is identified as an environ-
mentally friendly process, it presents the challenge of the variable availability of renewable
resources that causes fluctuations and interruptions in the generation of power, being therefore
a process better approached in probabilistic terms, including the uncertainty that characterizes
the process.

Basis of the research problem
The availability of renewable energies obeys to natural factors of the climatic system wi-

thout human intervention. Renewable energies have an instantaneously variable availability
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and such variations are often difficult to predict, leading to the field of probability and uncer-
tainty. In power generation systems based on renewable energy sources, uncertainty propa-
gates through the hybrid microgrid and influences the output power of the constituent subsys-
tems, namely, wind turbine generators and photovoltaic generators, including battery energy
storage systems. Uncertainty can arise not only as a result of the variable nature of the source of
renewable resources, but also, it can arise from the model parameters of the power generating
subsystems integrated in the hybrid microgrid. Power generation is affected by instantaneous
weather changes throughout the day, thus, we evaluated the influence of uncertainty in the
power produced of the subsystems, and in the parameters of the models of the subsystems in
function of the hourly changes of the state of the weather throughout the 24 hours of the day.
The objective is to produce a risk analysis and provide quantified uncertainty information by
modeling the uncertainty of parameters as a function of hourly changes in weather conditions
throughout the 24 hours of the day.

Short description of the microgrid diagram (Fig. 3.1, page 38)

The microgrid of interest is configured as isolated (or off-grid), it is not connected to a
conventional power grid, there is no external energy supplement, depends solely and exclusi-
vely on local generation through wind turbine generators and photovoltaic solar panels. The
constituent parts of the microgrid are as follows :

(i) Environment
The microgrid is totally dependent on renewable resources namely, wind power used as
wind speed v, solar power used as solar radiation G and ambient/air temperature ta.

Wind speed, solar radiation and ambient temperature are the connecting elements bet-
ween the environment and the physical part of the system.

To simplify the model, other environmental variables such as air density and humidity
are not considered.

(ii) Wind Turbine Generator
It is a generation subsystem that uses wind speed as an input variable, performs a series
of electromechanical operations converting wind speed into electrical power as an output
variable of the wind turbine generator.
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(iii) Photovoltaic solar panels
It is a generation subsystem that uses solar radiation and ambient temperature as input
variables, performs a series of photoelectric operations converting such solar radiation
and ambient temperature into electrical power as output variables of photovoltaic solar
panels.

(iv) Battery Energy Storage System
The microgrid has an integrated battery-based energy storage system, which stores excess
energy after satisfying demand needs, and makes the stored energy available in case of
a production deficit unable to satisfy demand needs, including mitigating the effects of
instantaneous output power fluctuations, system overload and consumption peaks.

(v) Demand load (Power consumers)
All the power produced by the isolated hybrid microgrid through wind turbine genera-
tors and photovoltaic solar panels, including that stored in batteries, is intended to supply
and fully satisfy the energy needs of consumers as required.

Description of input variables, page 40

(i) Wind speed
Wind speed is an environmental variable that characterizes the available wind power.
From the point of view of the wind turbine generator, the wind speed is an input variable
that, through its intensity, rotates the wind turbine’s propellers, generating power as an
output variable. The variable nature of wind speed is illustrated by the hourly variation
profile over the 24 hours of the day in figure 3.2 page 42.

(ii) Solar radiation
Solar radiation is an environmental variable that characterizes the available solar power.
From the point of view of the photovoltaic solar panel, solar radiation is an input variable
that falls on the photocells, generating power as an output variable of the photovoltaic
solar panel. The variable nature of solar radiation is illustrated through the hourly varia-
tion profile over the 24 hours of the day in figure 3.3, page 43.

(iii) Ambient temperature
The ambient temperature is an environment variable that influences the parameters of the
photovoltaic cell such as the cell temperature, the photovoltaic current and the voltage
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at the cell terminals, therefore, similar to solar radiation, the ambient temperature is also
an input variable of the photovoltaic solar panel that influences the power generation as
an output variable of the photovoltaic solar panel. The ambient temperature also has a
variable nature, the hourly variation profile over the 24 hours of the day is illustrated in
figure 3.4 page 44.

Mathematical models for power generation and storage

Wind-to-power conversion model

Modeling the output power of a wind turbine generator followed the following steps :

(i) Selection of wind turbine generator features
We selected the wind turbine generator by comparing manufacturers’ catalogs, to find
parameter values that best fit the wind speed data available for the simulation. We evalua-
ted the distribution curves of the prevailing minimums, averages and maximums. From
this procedure, we have selected the following wind turbine generator : ENERCOM E-
53, 800 kW. Manufacturer’s test data and technical specifications are illustrated in table
3.1 on page 46. The objective of this procedure is to make the most of the available wind
potential, in order to maximize the generation of output power.

(ii) Obtaining the mathematical model by the interpolation method
Using the manufacturer’s test data illustrated in table 3.1a on page 46, we applied the
cubic spline interpolation method described in equation 2.11 on page 22 and obtained the
piecewises functions illustrated in figure 3.6 on page 48. Piecewise functions is a set of
sub-functions defined and delimited by domain ranges.

(iii) Joining piecewise functions
In this step we perform the sum of all the piecewise functions (or sub-functions) to obtain
a generic function that allows us to obtain the estimated values of the output power of the
wind turbine generator through interpolation. The power performance curve obtained
by the piecewise cubic spline method as a mathematical model of converting wind speed
into wind turbine generator output power is illustrated in figure 3.7 on page 49.

The curve of the average values of the hourly distribution of the output power of the wind
turbine generator is illustrated in figure 3.8, page 50.
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Irradiance-to-power conversion models

The conversion of solar radiation to power follows the steps of calculating the parameters
in the following order :

(i) Selected photovoltaic solar panel
RECOM - Black Panther Mono crystalline module RCM-380-6MA.
The characteristics of this photovoltaic solar panel are presented in detail in table 3.3,
page 57.

(ii) Calculation of the output power of the photovoltaic panel
The conversion of solar radiation and ambient temperature into output power of the pho-
tovoltaic solar panel follows a sequence of equations for calculating parameters whose
details are discussed in section 2.9.2 on page 23 and are briefly presented below :

Ppvg = Ni · FFi · Vyi · Iyi

FFi =
VMPPi · IMPPi

VOCi · ISCi

Vyi = VOCi − Kvi · TCi

Iyi = si ·
[
ISCi + KCi · (TCi − 25)

]
TCi = Ta +

Si

800
· (TNOCT − 20)

The powers obtained above are deterministic but do not take uncertainties into account.
For uncertainties to be considered, a probabilistic modeling step, uncertainty propaga-
tion, risk analysis and production of quantified uncertainty information must be carried
out.

Energy storage

Batteries are the considered devices for electrical energy storage. The battery efficiency
depends on both the temperature and on the state of charge. Moreover, the internal resistances
of charge and discharge, as well as the capacitance efficiency have been included in the mo-
del 3.19, page 104.
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The optimization of the models of microgrid
The angle of incidence of sun light on the photovoltaic panel is calculated from the realistic

sun trajectory at the considered latitude and longitude. Therefore, the best position of fixed
photovoltaic panels is determined. Moreover, the incidence angle is used to modify the sun
irradiance considering both the polarization of light (and the transmittance of the cover blade
of photovoltaic panel) and the shading effect of the gridlines of the photovoltaic panel.

The optimization of microgrid
The models of wind turbine, photovoltaic panel and battery are used to describe the micro-

grid behavior. The goal is to calculate the required numbers of each of these devices to serve
the consumer demand. This optimum includes the typical cost of the microgrid.

Overview of the approach and outlook
The choice of modeling of the three devices of the microgrid is based on the following

motives. First, the cost of modeling is low : from other manufacturer data, the efficiency of the
microgrid can be evaluated, the propagation uncertainties of these data on the produced power
can be evaluated and the availability of demand serving is deduced from realistic inputs.
Therefore, the cost of the best microgrids is evaluated and can help to address the decision
making. The advantage of our approach is to be simple and flexible.

Finally, we proposed the method and gave an example of models, while giving a first
optimization. Future work should consist of improving models, making comparisons with
commercial software and developing decision-making criteria.

160



Thesis summary Résumé en Français

Résumé en Français

Contexte général de la thèse

Le secteur mondial de la production d’énergie continue d’être identifié comme

étant le principal responsable de l’émission de gaz à effet de serre dans l’at-

mosphère en raison de l’utilisation de sources de combustibles fossiles telles

que le charbon, le pétrole et le gaz pour la production d’énergie. Les gaz à

effet de serre sont un problème pour la planète Terre, car ils provoquent le

réchauffement climatique et d’autres problèmes environnementaux capables

de rendre la vie sur terre impossible. Ainsi, la communauté mondiale (autorités

gouvernementales et organisations internationales) est mobilisée pour renver-

ser la situation (de l’émission de gaz à effet de serre dans l’atmosphère, du

réchauffement climatique, des dommages environnementaux et autres consé-

quences) proposer une transition énergétique globale des énergies fossiles vers

les énergies renouvelables. Bien que la production d’énergie par l’utilisation

de sources d’énergie renouvelables soit identifiée comme un processus respec-

tueux de l’environnement, présente le défi de la disponibilité variable des res-

sources renouvelables qui provoque des fluctuations et des interruptions dans

la production d’électricité, étant donc un processus mieux abordé en termes

probabilistes, y compris l’incertitude qui caractérise le processus.

Base du problème de recherche

La disponibilité des énergies renouvelables obéit aux facteurs naturels du

système climatique sans intervention humaine. Les énergies renouvelables ont

une disponibilité instantanément variable et ces variations sont souvent diffi-

ciles à prévoir, ce qui conduit au domaine de la probabilité et de l’incertitude.
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Dans les systèmes de production d’électricité basés sur des sources d’énergie

renouvelables, l’incertitude se propage à travers le micro-réseau hybride et

influence la puissance de sortie des sous-systèmes constitutifs, à savoir les

éoliennes et les générateurs photovoltaïques, y compris les systèmes de sto-

ckage d’énergie par batterie. L’incertitude peut résulter non seulement de la

nature variable de la source de ressources renouvelables, mais également des

paramètres du modèle des sous-systèmes de production d’électricité intégrés

dans le micro-réseau hybride. La production d’électricité est affectée par les

changements climatiques instantanés tout au long de la journée, ainsi, nous

avons évalué l’influence de l’incertitude sur la puissance produite des sous-

systèmes, et sur les paramètres des modèles des sous-systèmes en fonction

des changements horaires de l’état du temps tout au long des 24 heures de la

journée.

L’objectif est de produire une analyse de risque et de fournir des informa-

tions quantifiées sur l’incertitude en modélisant l’incertitude des paramètres

en fonction des changements horaires des conditions météorologiques tout au

long des 24 heures de la journée.

Brève description du diagramme du microréseau (Fig. 3.1, page 38)

Le micro-réseau d’intérêt est configuré comme isolé (ou hors réseau), il n’est

pas connecté à un réseau électrique conventionnel, il n’y a pas d’apport d’éner-

gie externe. Il la seule source d’énergie électrique produite par des éoliennes

et des panneaux solaires photovoltaïques, éventuellement stockée dans des

batteries. Les éléments constitutifs du micro-réseau sont les suivants :

(i) Environnement

Le micro-réseau dépend totalement des ressources renouvelables, à savoir
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la vitesse du vent v, l’énergie solaire G et la température ambiante/de l’air

ta.

La vitesse du vent, le rayonnement solaire et la température ambiante

sont les éléments de liaison entre l’environnement et la partie physique

du système.

Pour simplifier le modèle, d’autres variables environnementales telles que

la densité de l’air et l’humidité ne sont pas prises en compte. Par contre,

la latitude et la longitude sont considérées dans une phase préliminaire

d’optimisation de l’orientation des panneaux solaires (supposés fixes).

(ii) Éolienne

Il s’agit d’un sous-système de génération d’électricité qui utilise la vi-

tesse du vent comme variable d’entrée, effectue une série d’opérations

électromécaniques convertissant la vitesse du vent en énergie électrique

(variable de sortie).

(iii) Panneaux solaires photovoltaïques

Le rayonnement solaire et la température ambiante sont leurs variables

d’entrée. Il effectue une série d’opérations photoélectriques convertissant

ce rayonnement solaire et cette température ambiante en énergie élec-

trique comme variables de sortie des panneaux solaires photovoltaïques.

(iv) Système de stockage d’énergie de type batterie

Le micro-réseau dispose d’un système intégré de stockage d’énergie basé

sur des batteries, qui stockent l’énergie excédentaire après avoir satisfait

les besoins de la demande, et rend l’énergie stockée disponible en cas de

déficit de production, si elle incapable de satisfaire la demande. Ce sous-

système atténue les effets des fluctuations instantanées de la puissance
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produite par les éoliennes et les panneaux photovoltaïques, de la sur-

charge du système et des pics de consommation.

(v) La demande (par les consommateurs d’énergie électrique)

Toute l’électricité produite par le micro-réseau hybride isolé, via des éo-

liennes et des panneaux solaires photovoltaïques, y compris celle stockée

dans des batteries, est destinée à alimenter et à satisfaire pleinement les

besoins énergétiques des consommateurs.

Description des variables d’entrée, Page 40

(i) Vitesse du vent

La vitesse du vent est une variable environnementale qui caractérise la

puissance éolienne disponible. Du point de vue de l’éolienne, la vitesse du

vent est une variable d’entrée qui, par son intensité, fait tourner les hélices

de l’éolienne, générant de l’énergie comme variable de sortie. Le caractère

variable de la vitesse du vent est illustré par le profil de variation horaire

sur les 24 heures de la journée sur la figure 3.2 page 42. Nos données

proviennent de mesures effectuées à Maputo. La vitesse du vent, mesurée

au sol diffère de celle à la hauteur de la génératrice de l’éolienne. Nous

avons donc corrigé les mesures à partir de la formule 2.12, page 22.

(ii) Radiation solaire

Le rayonnement solaire est une variable environnementale qui caractérise

la puissance solaire disponible. Du point de vue du panneau solaire pho-

tovoltaïque, le rayonnement solaire est une variable d’entrée qui tombe

sur les photocellules, générant de l’énergie en tant que variable de sortie

du panneau solaire photovoltaïque. Le caractère variable du rayonnement

solaire est illustré à travers le profil de variation horaire sur les 24 heures
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de la journée sur la figure 3.3 page 43. L’irradiance G (en W m−2) est une

variable d’entrée du modèle de panneaux photovolotaïques. Elle dépend

de la latitude et de la longitude. Nos données proviennent de mesures

effectuées à Maputo.

(iii) Température ambiante

La température ambiante est une variable d’environnement qui influence

les paramètres de la cellule photovoltaïque tels que la température de la

cellule, le courant photovoltaïque et la tension aux bornes de la cellule, par

conséquent, à l’instar du rayonnement solaire, la température ambiante

est également une variable d’entrée du panneau solaire photovoltaïque

qui influence la production d’énergie en tant que variable de sortie du

panneau solaire photovoltaïque. La température ambiante a également

un caractère variable, le profil de variation horaire sur les 24 heures de la

journée est illustré sur la figure 3.4 page 44. Nos données proviennent de

mesures effectuées à Maputo.

Modèles mathématiques pour la production et de stockage d’électricité

Modèle de conversion de la vitesse du vent en puissance électrique

La modélisation de la puissance de sortie d’un générateur d’éolienne a suivi

les étapes suivantes

(i) Sélection des caractéristiques des éoliennes

Nous avons sélectionné l’éolienne en comparant les catalogues des construc-

teurs, pour trouver les valeurs des paramètres qui correspondent le mieux

aux données de vitesse du vent disponibles pour la simulation. Nous

avons évalué les courbes de distribution des minimums, moyennes et
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maximums en vigueur. A partir de cette procédure, nous avons sélec-

tionné l’éolienne suivante : ENERCOM E-53, 800 kW. Les données de

test et les spécifications techniques du fabricant sont illustrées dans le

tableau 3.1 à la page 46. L’objectif de cette procédure est de tirer le meilleur

parti du potentiel éolien disponible, afin de maximiser la production de

puissance de sortie.

(ii) Obtention du modèle mathématique par la méthode d’interpolation

En utilisant les données de test du fabricant illustrées dans le tableau 3.1a

à la page 46, nous avons appliqué la méthode d’interpolation de type

spline cubique décrite dans l’équation 2.11 à la page 22 et obtenu les

fonctions par morceaux illustrées à la figure 3.6 à la page 48. Les fonctions

par morceaux sont un ensemble de sous-fonctions définies et délimitées

par des plages de domaines.

(iii) Joindre des fonctions par morceaux

Dans cette étape, nous effectuons la somme de toutes les fonctions (ou

sous-fonctions) par morceaux pour obtenir une fonction générique qui

nous permet d’obtenir les valeurs estimées de la puissance de sortie de

l’éolienne par interpolation. La courbe de performance de puissance obte-

nue par la méthode des splines cubiques par morceaux en tant que modèle

mathématique de conversion de la vitesse du vent en puissance de sortie

de l’éolienne est illustrée à la figure 3.7 à la page 49.

La courbe des valeurs moyennes de la répartition horaire de la puissance de

sortie de l’éolienne est illustrée figure 3.8, page 50. Nous n’avons pas trouvé de

modèle ou d’étude du vieillissement des éoliennes et de son influence sur la

production d’énergie. Tout autre modèle d’éolienne pourrait être utilisé dans
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notre approche, à condition d’être stable sur le domaine d’étude des entrées et

sorties.

Modèle de conversion de l’irradiance en puissance

La conversion du rayonnement solaire en puissance suit les étapes de calcul

des paramètres dans l’ordre suivant :

(i) Panneau solaire photovoltaïque sélectionné

RECOM - Black Panther Mono crystalline module RCM-380-6MA.

Les caractéristiques de ce panneau solaire photovoltaïque sont présentées

en détail dans le tableau 3.3, page 57.

(ii) Calcul de la puissance de sortie du panneau photovoltaïque

La conversion du rayonnement solaire et de la température ambiante en

puissance de sortie du panneau solaire photovoltaïque suit une séquence

d’équations pour le calcul des paramètres dont les détails sont discutés

dans la section 2.9.2 à la page 23 et sont brièvement présentés ci-dessous :

Ppvg = Ni · FFi · Vyi · Iyi

FFi =
VMPPi · IMPPi

VOCi · ISCi

Vyi = VOCi − Kvi · TCi

Iyi = si · [ISCi + KCi · (TCi − 25)]

TCi = Ta +
Si

800
· (TNOCT − 20)

Les puissances obtenues par l’équation matricielle illustrée ci-dessus sont

des puissances déterministes qui ne tiennent pas compte des incertitudes,

notamment des données constructeur. Pour que les incertitudes soient
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prises en compte, une étape de modélisation probabiliste, de leur pro-

pagation à travers les modèles mathématiques, d’analyse des risques et

de production d’informations quantifiées aidant à la prise de décision

doivent être réalisée.

De plus, l’angle d’incidence des rayons du soleil sur le panneau photvol-

taïque varie au cours de la journée. Afin d’avoir un modèle le plus réaliste

possible, nous avons utilisé l’algorithme décrit dans la référence [79] (sec-

tion 3.13, page 94) afin de calculer l’angle d’incidence des rayons sur le

panneau photovoltaïque. Ceci nous a permis de déterminer la meilleure

orientation du panneau afin de produire le maximum d’énergie électrique

(section 3.13.4, page 97). L’angle d’incidence est fonction de l’heure de la

journée et du jour de l’année. Il permet également de calculer :

— la transmittance par la plaque transparente située au-dessus des cel-

lules (section 3.14, page 97) ;

— l’effet d’ombrage, lié à la géométrie des panneaux photovoltaïques : les

bords des motifs des cellules et du panneau induisent une ombre pour

des angles d’incidence élevés (section 3.15, page 99).

Ces deux effets, réduisent l’efficacité du panneau photovoltaïque. Nous

avons ainsi corrigé les mesures de l’irradiance reçue par le panneau pho-

tovoltaïque.

Nous proposons également d’introduire un modèle de vieillissement des pan-

neaux, connu pour en diminuer l’efficacité au cours du temps. Même si nous

n’avons pas utilisé ce modèle puisque le vieillissement est négligeable sur les

deux années d’étude, il est nécessaire d’en tenir compte dans les choix de

microgrids. Tout autre modèle de panneau solaire pourrait être utilisé dans

notre approche, à condition d’être stable sur le domaine d’étude des entrées et
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sorties.

Stockage de l’énergie électrique

Nous considérons les batteries comme dispositifs de stockage d’énergie élec-

trique. L’efficacité de la batterie dépend à la fois de la température et de l’état

de charge. En outre, les résistances internes de charge et de décharge, ainsi

que l’efficacité déduite des effets capacitifs ont été inclus dans le modèle 3.19,

page 104.

La section de modélisation de la batterie a effectué une tâche fastidieuse consis-

tant à déduire des équations basées sur la combinaison d’approches et d’abs-

tractions des méthodes les plus variées disponibles dans la littérature telles

que les équations différentielles, les méthodes itératives, les équations déter-

ministes, entre autres. Un exemple de la diversité des approches dans la mo-

délisation des batteries est la capacité et l’état de charge de la batterie qui

sont présentés dans la littérature sous différentes perspectives. En général, les

modèles disponibles dans la littérature sont très complexes, ce qui nécessite

dans de nombreux cas des efforts de calcul et du temps, ainsi, dans cette thèse,

nous utilisons une modélisation déterministe avec des simplifications basées

sur des approximations. Nous utilisons le principe de fonctionnement de la

batterie flottante, qui consiste à charger et décharger simultanément en mode

d’utilisation continue, visant à simplifier le comportement de la batterie dans

le temps.

En général, nous discutons de la modélisation mathématique de la batterie ba-

sée sur la Réf. [4, 5, 63], nous utilisons leurs résultats numériques pour valider

notre code en nous concentrant sur les équations des paramètres suivants (voir

3.19, page 104) :
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— Capacité C en fonction de l’intensité du courant de la batterie Ibat

— État de charge EDC en fonction de la capacité C de la batterie

— Tension de décharge Vd en fonction du courant de décharge Id de la bat-

terie

— Résistance de décharge Rd en fonction de l’état de charge EDC
— Tension de décharge Vd en fonction du temps t(h)
— Tension de charge Vc en fonction du courant de charge Ic

— Tension de charge Vc en fonction du temps t(h)

Après une modélisation mathématique basée sur des approximations pour

obtenir les codes, nous utilisons les résultats numériques de Ref. [63, 4] pour

comparer et valider les modèles. Lors de la validation des modèles de para-

mètres, nous avons comparé les courbes de paramètres obtenues par nos codes

et les courbes de paramètres similaires à l’aide de modèles de Réf. [63, 4]. Voir

la comparaison des courbes de paramètres tout au long de la section 3.19, à

partir de la page 104.

L’étape suivante consistait essentiellement à appliquer les données d’entrée

aux modèles de paramètres de batterie validés à l’étape précédente, rappelant

que dans cette thèse nous avons utilisé comme variables d’entrée, la vitesse du

vent, le rayonnement solaire et la température ambiante, qui sont appliqués

sur les modèles paramétriques validés pour modéliser le comportement de

ces paramètres avec l’évolution horaire de l’état météorologique au cours des

heures de la journée. Dans la section 3.30 de la page 119. Ensuite, la modéli-

sation des paramètres de la batterie en fonction de l’évolution horaire de l’état

météorologique au cours des heures de la journée est présentée. Les paramètres

modélisés sont les suivants :

— Courant de charge Ic et courant de décharge Id
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— Capacité de la batterie C
— État de charge EDC
— Tension de charge Vc et tension de décharge Vd

— Force électromotrice de charge Ec et force électromotrice de décharge Ed

— Puissance de charge Pc et puissance de décharge Pd

Un aspect important à garder à l’esprit lors de la modélisation des paramètres

listés ci-dessus, est qu’ils sont tous présentés sous forme de cartographie par

échelle de couleurs pour évaluer le comportement (ou la réponse) de chaque

paramètre en fonction de l’évolution horaire de la état météorologique compte

tenu des données d’entrée sur deux ans (2019-2020). La cartographie par échelle

de couleurs est insérée dans une matrice jours (731 jours) X heures (24 heures).

Les paramètres de fonctionnement de la batterie montrent une variation ho-

raire du comportement au cours des heures de la journée, ce fait peut être

vérifié analytiquement à travers les équations mathématiques qui contiennent

la dépendance à la température, c’est-à-dire que la variable de température

affecte le fonctionnement de la batterie. De plus, l’effet des heures diurnes et

nocturnes détermine le comportement des courants de charge et de décharge,

qui affectent évidemment d’autres paramètres tels que la capacité de la batterie,

l’état de charge, la puissance de charge et la puissance de décharge.

Le modèle de batterie comportant des variables reliées entre elles (notam-

ment à l’état de charge) par des équations phénoménologiques, comportant des

dénominateurs pouvant s’annuler. Le code permettant de calculer la puissance

accumulée et fournie par la batterie comporte donc des tests de validité (les

résistances de charge et de décharge doivent avoir des valeurs raisonnables, la

tension d’entrée et de sortie doivent appartenir à des intervalles physiques).

Ceci est d’autant plus important lorsque l’objectif est de propager des incerti-
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tudes sur les données constructeur : la stabilité du modèle doit être garantie

dans les intervalles de variations des paramètres. De même, le comportement

du modèle de batterie doit être stable pour toutes les entrées (puissance élec-

trique produite par les éoliennes et les panneaux photovoltaïques) et les sorties

(puissance consommée) pour chacune des 24 heures et chacun des 731 jours

étudiés. Tout autre modèle de batterie pourrait être utilisé dans notre approche,

à condition de vérifier cette condition de stabilité. Les effets de température,

voire d’ébullition dans les cellules à acide sont intégrés. Un refroidissement des

batteries pourrait améliorer leur durabilité et leur capacité, mais demanderait

de l’énergie.

Optimisation des modèles de microgrids

Connaître le comportement des paramètres des sous-systèmes est fonda-

mental pour évaluer les performances du système hybride dans son ensemble.

Cependant, le micro-réseau dans sa configuration isolée, doit être en mesure

de répondre aux besoins de la demande mais à des coûts faibles, en étant

durables et contrôlables. La capacité de production dépend entièrement de la

disponibilité et de l’intensité des ressources renouvelables, à savoir la vitesse

du vent et le rayonnement solaire.

L’angle d’incidence de la lumière sur le panneau photovoltaïque est calculé à

partir de la trajectoire réaliste du soleil à la latitude et à la longitude consi-

dérées. Par conséquent, la meilleure position des panneaux photovoltaïques

fixes est déterminée. De plus, l’angle d’incidence est utilisé pour modifier l’ir-

radiance du soleil en tenant compte de la polarisation de la lumière (et la trans-

mittivité par la lame transparente de couverture du panneau photovoltaïque)

et l’effet d’ombrage des bandes conductrices de chaque cellule du panneau
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photovoltaïque.

Pour soutenir le processus de prise de décision sur la faisabilité technique et

financière du micro-réseau, une analyse comparative est présentée entre deux

localités, à savoir la province de Maputo et le district de Mecula, en comparant

des données telles que :

— Rayonnement solaire brut

— Rayonnement solaire utile

— Vitesse du vent

— Énergie produite par des panneaux solaires photovoltaïques

— Énergie produite par les éoliennes

— Demande (ou consommation) de puissance

Les modèles d’éoliennes, de panneaux photovoltaïques et de batteries sont

utilisés pour décrire le comportement du microgrid. Le but est de calculer le

nombre requis de chacun de ces appareils pour répondre à la demande des

consommateurs. Cet optimum inclut le coût typique du microgrid. Les résul-

tats ont présentés sous la forme d’options de coût optimisé tout en assurant la

capacité à satisfaire la demande, en intégrant éventuellement un taux identifié

de défaut tolérable de service. Ainsi, la méthode très simple proposée permet

de choisir une option financièrement viable, en intégrant les différents sous-

systèmes du micro-réseau, à savoir WTG, PVG et BESS. Bien sûr, le modèle de

batterie peut être changé à volonté. Encore, une fois, nous proposons une mé-

thode simple, basée sur des modèles dont le calcul est rapide, afin de permettre

à la fois des calculs déterministes sur de nombreuses données, des calculs de

propagation d’incertitude de type Monte Carlo et statistiques.
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Aperçu de l’approche et perspectives

Le choix de la modélisation des trois dispositifs du microgrid est basé sur les

motifs suivants. Le coût de la modélisation est faible : à partir d’autres données

du fabricant, l’efficacité du microgrid peut être évaluée, les incertitudes de

propagation de ces données sur la puissance produite peuvent être évaluées

et la réponse à la demande est déduite d’intrants réalistes. L’avantage de notre

approche est d’être simple et flexible, le prix des différents composants pou-

vant être également ajusté.

Enfin, nous avons proposé la méthode et donné un exemple de modèles,

tout en donnant une première optimisation. Les travaux futurs devraient consis-

ter à améliorer les modèles, à établir des comparaisons avec les logiciels com-

merciaux et à élaborer des critères de prise de décision.

Prévision probabiliste de Pwtg and Ppvg

La puissance de sortie de l’éolienne Pwtg (figure 3.8, page 50) et celle du

générateur photovoltaïque Ppvg (figure 3.9, page 52) sont des puissances de

sortie estimées déterministes. Les systèmes de production d’électricité basés

sur des sources d’énergie renouvelables sont caractérisés par des incertitudes

sur la disponibilité et l’intensité du potentiel renouvelable (potentiel éolien et

potentiel solaire) rendant difficile la prévision précise de la puissance pouvant

être produite à un moment donné.

De nombreux modèles de prédiction probabiliste sont composés de modèles

uniques (ou de modèles individuels). Les modèles probabilistes simples peuvent

rarement être parfaits pour la tâche de prévision, une solution statistique pour

améliorer la précision des prévisions consiste à utiliser le principe de combi-
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naison multi-modèle probabiliste. Le principe MMC est appliqué séparément

à chaque puissance de sortie Pwtg et Ppvg comme suit :

(i) Pour chaque jeu de données horaire hj de la puissance déterministe Pwtg

et Ppvg, un test de normalité est effectué.

Le test de normalité vise uniquement à comprendre le comportement sta-

tistique des données d’entrée. Le résultat obtenu indiquant si les don-

nées suivent une distribution normale ou non normale n’est pas considéré

comme une fin mais comme un moyen d’évaluer le comportement statis-

tique de chacun de Pwtg et Ppvg.

(ii) Considérons deux ensembles m1 et m2, chaque ensemble composé de mo-

dèles uniques (modèles individuels) f (x) et g(y) tels que :

m1 = { f1(x), f2(x), · · · , fn(x)}
m2 = {g1(y), g2(y), · · · , gn(y)}

Chaque modèle unique appartenant à m1 ou m2 est appelé modèle candi-

dat

(iii) Tester les modèles sur les données de puissance de sortie
— L’ensemble des modèles candidats m1 est testé sur le jeu de données

Pwtg

— L’ensemble des modèles candidats m2 est testé sur le jeu de données

Ppvg.
Cette étape vise à déterminer la qualité de l’ajustement de chaque modèle

candidat lorsqu’il est appliqué à l’ensemble de données de puissance de

sortie horaire.

Lorsqu’un ensemble donné de modèles candidats m1 ou m2 est appliqué
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aux données de puissance de sortie Pwtg ou Ppvg, la qualité de l’ajuste-

ment des modèles de cet ensemble est déterminée par la méthode Akaike

Information Criteria (AIC), en calculant la valeur AIC, puis comparez

les valeurs AIC de chaque modèle unique appartenant à un ensemble,

positionnez-les par ordre croissant. Le modèle avec la valeur AIC la plus

basse a la meilleure qualité d’ajustement, le modèle avec la valeur AIC

la plus élevée a la pire qualité d’ajustement, plus la valeur de l’AIC est

élevée, plus la qualité du modèle est faible par rapport aux autres mo-

dèles candidats appartenant au même ensemble testé par rapport à un

ensemble de données statistiques.

(iv) Détermination des poids du modèle

Sachant que l’objectif est de construire un modèle probabiliste avec une

approche multi-modèle, les modèles déjà triés par ordre croissant en fonc-

tion de la qualité de l’ajustement doivent avoir un poids avec lequel chaque

modèle individuel participe à la combinaison.

Le poids avec lequel chaque modèle participe à la combinaison est dé-

terminé par les poids d’Akaike, calculés en fonction de la valeur AIC de

chaque modèle. Ainsi, l’ampleur de chaque poids et le positionnement

dans l’ordre décroissant des poids des modèles coïncident avec le posi-

tionnement de la qualité d’ajustement de chacun des modèles de l’en-

semble (exemple : si le modèle a la troisième meilleure qualité d’ajuste-

ment, le poids aura également la troisième position dans l’ordre décrois-

sant des poids).

(v) Composition du modèle de combinaison multi-modèles

Dans le classement décroissant des poids, la position de chaque poids du

modèle calculé en fonction de la valeur de l’AIC coïncide avec le clas-
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sement du modèle en fonction de la qualité d’ajustemen, ainsi, pour la

composition du modèle de combinaison multi-modèle, on multiplie la

fonction (modèle candidat) par le poids correspondant en utilisant le prin-

cipe de combinaison linéaire exprimé par :

p (data| f1(x), f2(x), · · · , fn(x)) =
n

∑
i=1

ωi · pi(data| fn(x))

Par conséquent, le modèle de combinaison multimodèle pour prédire la

puissance de sortie de l’éolienne Pwtg et la puissance de sortie du générateur

photovoltaïque Ppvg sera exprimé comme :

Pour WTG : f (x) = ω1 · f1(x) + ω2 · f2(x) + · · ·+ ωn · fn(x)

Pour PVG : g(y) = λ1 · g1(y) + λ2 · g2(y) + · · ·+ λn · gn(y)

Supposons que x = Pwtg, y = Ppvg, f (x) x est un modèle MMC pour prévoir
et estimer la puissance de sortie du WTG, g(x) est un modèle MMC pour
prévoir et estimer la puissance de sortie du PVG, ω et λ représentent les poids
avec lesquels chaque modèle membre participe au combinaison pour former le
modèle combiné. (ω, λ) ∈ [0, 1].
L’objectif de cette procédure est de construire un modèle probabiliste basé sur
le principe de combinaison multi-modèles applicable aux systèmes hybrides
de production d’électricité composés de WTG et PVG, visant à améliorer la
précision de la prévision de puissance horaire et la capacité de production
horaire du système.
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